跳转至内容
Merck
  • Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for species identification of Acinetobacter strains isolated from blood cultures.

Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for species identification of Acinetobacter strains isolated from blood cultures.

Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases (2013-10-16)
K Kishii, K Kikuchi, N Matsuda, A Yoshida, K Okuzumi, Y Uetera, H Yasuhara, K Moriya
摘要

The clinical relevance of Acinetobacter species, other than A. baumannii, as human pathogens has not been sufficiently assessed owing to the insufficiency of simple phenotypic clinical diagnostic laboratory tests. Infections caused by these organisms have different impacts on clinical outcome and require different treatment and management approaches. It is therefore important to correctly identify Acinetobacter species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been introduced to identify a wide range of microorganisms in clinical laboratories, but only a few studies have examined its utility for identifying Acinetobacter species, particularly those of the non-Acinetobacter baumannii complex. We therefore evaluated MALDI-TOF MS for identification of Acinetobacter species by comparing it with sequence analysis of rpoB using 123 isolates of Acinetobacter species from blood. Of the isolates examined, we identified 106/123 (86.2%) to species, and 16/123 (13.0%) could only be identified as acinetobacters. The identity of one isolate could not be established. Of the 106 species identified, 89/106 (84.0%) were confirmed by rpoB sequence analysis, and 17/106 (16.0%) were discordant. These data indicate correct identification of 89/123 (72.4%) isolates. Surprisingly, all blood culture isolates were identified as 13 species of Acinetobacter, and the incidence of Acinetobacter pittii was unexpectedly high (42/123; 34.1%) and exceeded that of A. baumannii (22/123; 17.9%). Although the present identification rate using MALDI-TOF MS is not acceptable for species-level identification of Acinetobacter, further expansion of the database should remedy this situation.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
三氟乙酸, ReagentPlus®, 99%
Sigma-Aldrich
三氟乙酸, suitable for HPLC, ≥99.0%
Sigma-Aldrich
乙腈, HPLC Plus, ≥99.9%
Sigma-Aldrich
甲酸, reagent grade, ≥95%
Sigma-Aldrich
甲酸, ACS reagent, ≥96%
Sigma-Aldrich
三氟乙酸, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
甲酸, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲酸, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
三氟乙酸, ≥99%, for protein sequencing
Sigma-Aldrich
甲酸, ACS reagent, ≥88%
Sigma-Aldrich
乙腈, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
甲酸, ≥95%, FCC, FG
Sigma-Aldrich
乙腈, ReagentPlus®, 99%
Sigma-Aldrich
乙腈, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
乙腈, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
乙腈, HPLC grade, ≥99.93%
Sigma-Aldrich
甲酸, JIS special grade, ≥98.0%
Sigma-Aldrich
乙腈, ≥99.8%, suitable for HPLC
Supelco
乙腈, Pharmaceutical Secondary Standard; Certified Reference Material
USP
二类残留溶剂 - 甲醇, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
乙腈, ≥99.8%, JIS 300
Sigma-Aldrich
甲酸 溶液, BioUltra, 1.0 M in H2O
Sigma-Aldrich
乙腈, JIS special grade, ≥99.5%
Sigma-Aldrich
三氟乙酸, SAJ special grade, ≥99.0%
Supelco
三氟乙酸, analytical standard