Saltar al contenido
Merck

Alteration of the langerin oligomerization state affects Birbeck granule formation.

Biophysical journal (2015-02-05)
Eric Chabrol, Michel Thépaut, Colette Dezutter-Dambuyant, Corinne Vivès, Julien Marcoux, Richard Kahn, Jenny Valladeau-Guilemond, Patrice Vachette, Dominique Durand, Franck Fieschi
RESUMEN

Langerin, a trimeric C-type lectin specifically expressed in Langerhans cells, has been reported to be a pathogen receptor through the recognition of glycan motifs by its three carbohydrate recognition domains (CRD). In the context of HIV-1 (human immunodeficiency virus-1) transmission, Langerhans cells of genital mucosa play a protective role by internalizing virions in Birbeck Granules (BG) for elimination. Langerin (Lg) is directly involved in virion binding and BG formation through its CRDs. However, nothing is known regarding the mechanism of langerin assembly underlying BG formation. We investigated at the molecular level the impact of two CRD mutations, W264R and F241L, on langerin structure, function, and BG assembly using a combination of biochemical and biophysical approaches. Although the W264R mutation causes CRD global unfolding, the F241L mutation does not affect the overall structure and gp120 (surface HIV-1 glycoprotein of 120 kDa) binding capacities of isolated Lg-CRD. In contrast, this mutation induces major functional and structural alterations of the whole trimeric langerin extracellular domain (Lg-ECD). As demonstrated by small-angle x-ray scattering comparative analysis of wild-type and mutant forms, the F241L mutation perturbs the oligomerization state and the global architecture of Lg-ECD. Correlatively, despite conserved intrinsic lectin activity of the CRD, avidity property of Lg-ECD is affected as shown by a marked decrease of gp120 binding. Beyond the change of residue itself, the F241L mutation induces relocation of the K200 side chain also located within the interface between protomers of trimeric Lg-ECD, thereby explaining the defective oligomerization of mutant Lg. We conclude that not only functional CRDs but also their correct spatial presentation are critical for BG formation as well as gp120 binding.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Ácido trifluoroacético, ReagentPlus®, 99%
Sigma-Aldrich
Ácido trifluoroacético, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Sacarosa, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Ácido trifluoroacético, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Cloruro de sodio, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Sacarosa, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
USP
Sacarosa, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ácido trifluoroacético, ≥99%, for protein sequencing
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Cloruro de sodio, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Cloruro de sodio, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrilo, biotech. grade, ≥99.93%
Sigma-Aldrich
Sacarosa, Grade I, ≥99% (GC), suitable for plant cell culture