Saltar al contenido
Merck
  • Optimization of microwave-assisted extraction of polyphenols from herbal teas and evaluation of their in vitro hypochlorous acid scavenging activity.

Optimization of microwave-assisted extraction of polyphenols from herbal teas and evaluation of their in vitro hypochlorous acid scavenging activity.

Journal of agricultural and food chemistry (2014-11-05)
Burcu Bekdeşer, Nazan Durusoy, Mustafa Özyürek, Kubilay Güçlü, Reşat Apak
RESUMEN

Hypochlorous acid (HOCl) is an important reactive oxygen species (ROS) and non-radical and is taking part in physiological processes concerned with the defense of the organism, but there has been limited information regarding its scavenging by polyphenols. This study was designed to examine the HOCl scavenging activity of several polyphenols and microwave-assisted extracts of herbal teas. HOCl scavenging activity has usually been determined spectrophotometrically by a KI/taurine assay at 350 nm. Because some polyphenols (i.e., apigenin and chrysin) have a strong ultraviolet (UV) absorption in this range, their HOCl scavenging activity was alternatively determined without interference using resorcinol (1,3-dihydroxybenzene) as a fluorogenic probe. In the present assay, HOCl induces the chlorination of resorcinol into its non-fluorescent products. Polyphenols as HOCl scavengers inhibit the chlorination of the probe by this species. Thus, the 25% inhibitive concentration (IC25) value of polyphenols was determined using the relative increase in fluorescence intensity of the resorcinol probe. The HOCl scavenging activities of the test compounds decreased in the order: epigallocatechin gallate > quercetin > gallic acid > rutin > catechin > kaempferol. The present study revealed that epigallocatechin gallate (IC25 = 0.1 μM) was the most effective scavenging agent. In addition to polyphenols, four herbal teas were evaluated for their HOCl activity using the resorcinol method. The proposed spectrofluorometric method was practical, rapid, and less open to interferences by absorbing substances in the range of 200-420 nm. The results hint to the possibility of polyphenols having beneficial effects in diseases, such as atherosclerosis, in which HOCl plays a pathogenic role.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, for molecular biology
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ácido acético, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Ácido acético, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, HPLC/spectrophotometric grade
Sigma-Aldrich
Sodium hypochlorite solution, reagent grade, available chlorine 4.00-4.99 %
Sigma-Aldrich
Yoduro de potasio, ACS reagent, ≥99.0%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
Sodium hypochlorite solution, reagent grade, available chlorine 10-15 %
Sigma-Aldrich
Alcohol etílico puro, 190 proof, for molecular biology
Sigma-Aldrich
Yoduro de potasio, ReagentPlus®, 99%
Sigma-Aldrich
Ácido acético, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Ácido acético, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Quercetin, ≥95% (HPLC), solid
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Ácido acético solution, suitable for HPLC
Sigma-Aldrich
Metanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Ácido acético, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Yoduro de potasio, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Taurine, ≥99%
Sigma-Aldrich
Ácido gálico, 97.5-102.5% (titration)
Sigma-Aldrich
Etanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Yoduro de potasio, puriss. p.a., reag. ISO, reag. Ph. Eur., ≥99.0%
Sigma-Aldrich
Sodium hypochlorite solution, CP
Sigma-Aldrich
p-Coumaric acid, ≥98.0% (HPLC)