Passa al contenuto
Merck
  • Electrospray ionization mass spectrometry of non-covalent complexes formed between N-alkylimidazolium-containing zwitterionic sulfonates and protonated bases.

Electrospray ionization mass spectrometry of non-covalent complexes formed between N-alkylimidazolium-containing zwitterionic sulfonates and protonated bases.

European journal of mass spectrometry (Chichester, England) (2014-01-01)
Anton Podjava, Svjatoslav Kistkin, Elina Ausekle, Elina Priede, Peteris Mekss, Andris Zicmanis
ABSTRACT

This paper describes non-covalent complexes between zwitterionic 3-(1-alkyl-3N-imidazolio)- propane-1-sulfonates and different amines. Electrospray ionization (ESI) mass spectrometry and collision- induced dissociation were used to measure the stability of such complexes in solution and in the gas phase. Generally, zwitterionic sulfonates formed more abundant complexes with protonated 5-methylcytosine (5-MCH) than with aliphatic amines. The results show that the association constants and half-dissociation threshold energies of these complexes nonlinearly depend on the alkyl chain length of the zwitterion. It is shown that the complexes with the lowest stability exist in acetonitrile solution or in the gas phase. The factors responsible for this complicated behavior are discussed. The structure of the complexes was investigated by quantum chemical calculations using molecular mechanics and density functional theory. Hydrogen bonding is proposed as the main type of interaction responsible for the stability of ion-zwitterion complexes. In summary, the information obtained in this study could be used for the development of the new derivatization reagents for some compounds containing amidinium groups, like 5-MCH, to increase selectivity of ESI-based methods.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acido formico, reagent grade, ≥95%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acido formico, ACS reagent, ≥96%
Sigma-Aldrich
Acido formico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanolo, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Acido formico, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Hexylamine, 99%
Sigma-Aldrich
Acido formico, ACS reagent, ≥88%
Sigma-Aldrich
Trietilammina, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanolo, BioReagent, ≥99.93%
Sigma-Aldrich
Metanolo, Absolute - Acetone free
Sigma-Aldrich
Pyrrolidine, 99%
USP
Metanolo, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Trietilammina, ≥99.5%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%