Direkt zum Inhalt
Merck
  • Effects of spray drying process parameters on the solubility behavior and physical stability of solid dispersions prepared using a laboratory-scale spray dryer.

Effects of spray drying process parameters on the solubility behavior and physical stability of solid dispersions prepared using a laboratory-scale spray dryer.

Drug development and industrial pharmacy (2012-06-08)
Yuki Kojima, Tomoaki Ohta, Kouji Shiraki, Ryusuke Takano, Hiroyuki Maeda, Yutaka Ogawa
ZUSAMMENFASSUNG

The purpose of this study is to determine the process parameters of the laboratory-scale spray dryer affecting the solubility behavior and physical stability of solid dispersions. Solid dispersions of the model drug (nilvadipine or nifedipine) and hypromellose (HPMC) (w/w: 1/1) were prepared using the laboratory-scale spray dryer. As process parameters, nitrogen flow rate, sample concentration and pump speed were investigated. The samples were characterized by dissolution tests, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscope (SEM), and nanoscale thermal analysis (Nano-TA). The physical stability was monitored after 7 months storage at 25°C. Solubility behavior and physical stability were improved by setting the low nitrogen flow rate and high sample concentration. DSC showed that the physical state depends on the spray drying conditions, whereas, every sample showed the similar morphology from SEM results. The difference of solubility behavior and physical stability were found to come from the microstructural phase separation of the spray dried particles using a novel analytical technique (Nano-TA). This study demonstrated that nitrogen flow rate and sample concentration should be the critical parameters for the enhancements of the solubility and physical stability of solid dispersions.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Methylzellulose, viscosity: 4,000 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 2,600-5,600 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Methylzellulose, viscosity: 15 cP, BioReagent, suitable for cell culture
Sigma-Aldrich
Methylzellulose, viscosity: 1,500 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~10,000
Sigma-Aldrich
Methylzellulose, viscosity: 15 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 40-60 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 80-120 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Nifedipin, ≥98% (HPLC), powder
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~86,000
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~120,000
Sigma-Aldrich
Methylzellulose, viscosity: 25 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~90,000
Sigma-Aldrich
Hypromellose, meets USP testing specifications
Sigma-Aldrich
Methylzellulose, 27.5-31.5% (Methoxyl content), viscosity: 400 cP
Sigma-Aldrich
Methocel® A15 LV, 27.5-31.5% methoxyl basis
Sigma-Aldrich
Methocel® A4M, viscosity 3000-5500 mPa.s, 2 % in H2O(20 °C)
Sigma-Aldrich
Methylzellulose, meets USP testing specifications, 26.0-33.0% (methoxyl group, on Dry Basis), viscosity: 400 cP
Sigma-Aldrich
Methocel® MC, medium viscosity, Methoxyl content 27.5-31.5 %
Sigma-Aldrich
Methylzellulose, 26.0-33.0% (Methoxy group (dry basis)), meets USP testing specifications, viscosity: 1,500 cP
Sigma-Aldrich
Methylzellulose, tested according to Ph. Eur.
Nifedipin, European Pharmacopoeia (EP) Reference Standard