Direkt zum Inhalt
Merck
  • Modulation of multidrug resistance protein 1 (MRP1/ABCC1)-mediated multidrug resistance by bivalent apigenin homodimers and their derivatives.

Modulation of multidrug resistance protein 1 (MRP1/ABCC1)-mediated multidrug resistance by bivalent apigenin homodimers and their derivatives.

Journal of medicinal chemistry (2009-09-04)
Iris L K Wong, Kin-Fai Chan, Ka Hing Tsang, Chi Yin Lam, Yunzhe Zhao, Tak Hang Chan, Larry Ming Cheung Chow
ZUSAMMENFASSUNG

Here we showed that bivalency approach is effective in modulating multidrug resistance protein 1 (MRP1/ABCC1)-mediated doxorubicin (DOX) and etoposide (VP16) resistance in human 2008/MRP1 ovarian carcinoma cells. Flavonoid dimers bearing five or six ethylene glycol (EG) units with 6-methyl (4e, 4f) or 7-methyl (5e, 5f) substitution on the ring A of flavonoid dimers have the highest modulating activity for DOX against MRP1 with an EC(50) ranging from 73 to 133 nM. At 0.5 microM, the flavonoid dimer 4e was sufficient to restore DOX accumulation in 2008/MRP1 to parental 2008/P level. Lineweaver-Burk and Dixon plot suggested that it is likely a competitive inhibitor of DOX transport with a K(i) = 0.2 microM. Our data suggest that flavonoid dimers have a high affinity toward binding to DOX recognition site of MRP1. This results in inhibiting DOX transport, increasing intracellular DOX retention, and finally resensitizing 2008/MRP1 to DOX. The present study demonstrates that flavonoid dimers can be employed as an effective modulator of MRP1-mediated drug resistance in cancer cells.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Kaempferol, ≥97.0% (HPLC)
Sigma-Aldrich
Apigenin, ≥95.0% (HPLC)
Sigma-Aldrich
Kaempferol, ≥90% (HPLC), powder
Sigma-Aldrich
Myricetin, ≥96.0%, crystalline
Sigma-Aldrich
Myricetin, ≥96.0% (HPLC)
Sigma-Aldrich
Diosmetin