DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to
DNA methylation has a profound impact on genome stability, transcription and development. Although enzymes that catalyse DNA methylation have been well characterized, those that are involved in methyl group removal have remained elusive, until recently. The transformative discovery that ten-eleven
Current opinion in cell biology, 25(2), 152-161 (2013-03-19)
Changes in cellular phenotypes and identities are fundamentally regulated by epigenetic mechanisms including DNA methylation, post-translational histone modifications and chromatin remodeling. Recent genome-wide profiles of the mammalian DNA 'methylome' suggest that hotspots of dynamic DNA methylation changes during cell fate
Science (New York, N.Y.), 341(6146), 1237905-1237905 (2013-07-06)
DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread
Current opinion in cell biology, 25(3), 289-296 (2013-03-19)
5-Methylcytosine (5mC) can be converted to 5-hydroxymethylcytosine (5hmC) in mammalian cells by the ten-eleven translocation (Tet) family of dioxygenases. While 5mC has been extensively studied, we have just started to understand the distribution and function of 5hmC in mammalian genomes.
Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..