Journal of nanoscience and nanotechnology, 12(11), 8258-8265 (2013-02-21)
Quantum dots are being widely used in physics and in the biomedical industry in recent years due to their excellent optical characteristics. However, studies have shown that cadmium selenide core-shell quantum dots exhibit cytotoxicity. The present study investigates the induction
Journal of nanoscience and nanotechnology, 13(1), 23-32 (2013-05-08)
Semiconducting nanowire heterostructures are of particular interest because of their fascinating properties and potential applications in the field of nanoscale science. CdS, with a direct bandgap of 2.42 eV, is considered to be an excellent material for various optoelectronic applications
Ultrafast time-resolved absorption spectroscopy is used to investigate exciton dynamics in CdSe nanocrystal films. The effects of morphology, quantum-dot versus quantum-rod, and preparation of nanocrystals in a thin film form are investigated. The measurements revealed longer intraband exciton relaxation in
Quantum confinement can dramatically slow down electron-phonon relaxation in nanoclusters. Known as the phonon bottleneck, the effect remains elusive. Using a state-of-the-art time-domain ab initio approach, we model the observed bottleneck in CdSe quantum dots and show that it occurs
The CdS/SiO(2) core/shell nanowires (NWs) with controlled shell thickness were successfully synthesized and subsequently heat-treated at 500 °C. The influences of silica shell coating and annealing processes on their optical properties have been investigated. Compared with original CdS NWs, the
Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..