Accéder au contenu
MilliporeSigma
  • Characterization of a novel standardized human three-dimensional skin wound healing model using non-sequential fractional ultrapulsed CO2 laser treatments.

Characterization of a novel standardized human three-dimensional skin wound healing model using non-sequential fractional ultrapulsed CO2 laser treatments.

Lasers in surgery and medicine (2015-03-17)
Yvonne Marquardt, Philipp M Amann, Ruth Heise, Katharina Czaja, Timm Steiner, Hans F Merk, Claudia Skazik-Voogt, Jens M Baron
RÉSUMÉ

At present, there is no standardized in vitro human skin model for wound healing. Therefore, our aim was to establish and characterize an in vitro/ex vivo three-dimensional (3D) wound healing model, which we employed to analyze the effects of dexpanthenol on wound healing and gene regulation. The novel human 3D skin wound healing model using scaffold and collagen 3D organotypic skin equivalents was irradiated with a non-sequential fractional ultrapulsed CO2 laser. These standardized injured full-thickness skin equivalents enable qRT-PCR, microarray, and histological studies analyzing the effect of topically or systemically applied compounds on skin wound healing. These human laser-irradiated skin models were found to be appropriate for in vitro wound healing analysis. Topical treatment of skin wounds with a 5% dexpanthenol water-in-oil emulsion or two different 5% dexpanthenol oil-in-water emulsions clearly enhanced wound closure compared to laser-irradiated untreated control models. To find out whether this positive effect is caused by the active substance dexpanthenol, laser-irradiated skin models were cultured in calciumpantothenate containing medium (20 μg/ml) compared to skin equivalents cultured without calciumpantothenate. 3D models cultured in calciumpantothenate revealed considerably faster wound closure compared to the control models. Quantitative RT-PCR studies showed enhanced mRNA expression of MMP3, IL1α, keratin-associated protein 4-12 (KRTAP4-12), and decreased expression of S100A7 in laser-irradiated skin models cultured in medium containing calciumpantothenate. This novel standardized human 3D skin wound healing model proves useful for topical pharmacological studies on wound healing and reveals new insights into molecular mechanisms of dexpanthenol-mediated effects on wound healing. In addition, these novel 3D model systems can be used to monitor ex vivo effects of various laser systems on gene expression and morphology of human skin.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
L-acide ascorbique, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-acide ascorbique, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-acide ascorbique, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-acide ascorbique, reagent grade, crystalline
Sigma-Aldrich
L-acide ascorbique, 99%
USP
Acide ascorbique, United States Pharmacopeia (USP) Reference Standard
Supelco
L-acide ascorbique, analytical standard
Supelco
L-acide ascorbique, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-acide ascorbique, reagent grade
Sigma-Aldrich
L-acide ascorbique, ACS reagent, ≥99%
Sigma-Aldrich
L-acide ascorbique, meets USP testing specifications
Sigma-Aldrich
L-acide ascorbique, FCC, FG
Sigma-Aldrich
L-acide ascorbique, BioUltra, ≥99.5% (RT)
Supelco
Dexpanthenol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-acide ascorbique, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
USP
Dexpanthenol, United States Pharmacopeia (USP) Reference Standard
L-acide ascorbique, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
L-acide ascorbique, tested according to Ph. Eur.
Supelco
L-acide ascorbique, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-acide ascorbique, puriss. p.a., ≥99.0% (RT)
Dexpanthenol, European Pharmacopoeia (EP) Reference Standard