Pular para o conteúdo
Merck
  • Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

Journal of chromatography. A (2014-06-30)
Sam Wouters, Bert Wouters, Sander Jespers, Gert Desmet, Hamed Eghbali, Cees Bruggink, Sebastiaan Eeltink
RESUMO

A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Ácido sulfúrico, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Ácido fórmico, reagent grade, ≥95%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥96%
Sigma-Aldrich
Ácido fórmico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Ácido sulfúrico, 99.999%
Sigma-Aldrich
Ácido fórmico, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Ácido sulfúrico, puriss. p.a., for determination of Hg, ACS reagent, reag. ISO, reag. Ph. Eur., 95.0-97.0%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥88%
Sigma-Aldrich
Ácido sulfúrico, puriss., meets analytical specification of Ph. Eur., BP, 95-97%
Sigma-Aldrich
Ácido sulfúrico, puriss. p.a., ≥25% (T)
Sigma-Aldrich
Ácido fórmico, ≥95%, FCC, FG
Supelco
Ácido sulfúrico, 0.1 M H2SO4 in water (0.2N), eluent concentrate for IC
Supelco
Ácido sulfúrico, for the determination of nitrogen, ≥97.0%
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O