Pular para o conteúdo
Merck
  • Nanotopography directs mesenchymal stem cells to osteoblast lineage through regulation of microRNA-SMAD-BMP-2 circuit.

Nanotopography directs mesenchymal stem cells to osteoblast lineage through regulation of microRNA-SMAD-BMP-2 circuit.

Journal of cellular physiology (2014-03-13)
Rogerio B Kato, Bhaskar Roy, Fabiola S De Oliveira, Emanuela P Ferraz, Paulo T De Oliveira, Austin G Kemper, Mohammad Q Hassan, Adalberto L Rosa, Marcio M Beloti
RESUMO

The aim of this study was to investigate if chemically produced nanotopography on titanium (Ti) surface induces osteoblast differentiation of cultured human bone marrow mesenchymal stem cells (hMSCs) by regulating the expression of microRNAs (miRs). It was demonstrated that Ti with nanotopography induces osteoblast differentiation of hMSCs as evidenced by upregulation of osteoblast specific markers compared with untreated (control) Ti at day 4. At this time-point, miR-sequencing analysis revealed that 20 miRs were upregulated (>twofold) while 20 miRs were downregulated (>threefold) in hMSCs grown on Ti with nanotopography compared with control Ti. Three miRs, namely miR-4448, -4708, and -4773, which were significantly downregulated (>fivefold) by Ti with nanotopography affect osteoblast differentiation of hMSCs. These miRs directly target SMAD1 and SMAD4, both key transducers of the bone morphogenetic protein 2 (BMP-2) osteogenic signal, which were upregulated by Ti with nanotopography. Overexpression of miR-4448, -4708, and 4773 in MC3T3-E1 pre-osteoblasts noticeably inhibited gene and protein expression of SMAD1 and SMAD4 and therefore repressed the gene expression of key bone markers. Additionally, it was observed that the treatment with BMP-2 displayed a higher osteogenic effect on MC3T3-E1 cells grown on Ti with nanotopography compared with control Ti, suggesting that the BMP-2 signaling pathway was more effective on this surface. Taken together, these results indicate that a complex regulatory network involving a miR-SMAD-BMP-2 circuit governs the osteoblast differentiation induced by Ti with nanotopography. J. Cell. Physiol. 229: 1690-1696, 2014. © 2014 Wiley Periodicals, Inc.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Phosphatase, Alkaline from bovine intestinal mucosa, lyophilized powder, ≥10 DEA units/mg solid
Sigma-Aldrich
Phosphatase, Alkaline from bovine intestinal mucosa, BioUltra, ≥5,700 DEA units/mg protein
Sigma-Aldrich
Phosphatase, Alkaline from bovine intestinal mucosa, buffered aqueous solution, ≥2,000 DEA units/mg protein
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, powder, <45 μm avg. part. size, 99.98% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Phosphatase, Alkaline from Escherichia coli, lyophilized powder, 30-60 units/mg protein (in glycine buffer)
Sigma-Aldrich
Titanium, powder, −100 mesh, 99.7% trace metals basis
Sigma-Aldrich
Phosphatase, Alkaline from bovine intestinal mucosa, buffered aqueous glycerol solution, ≥4,000 DEA units/mg protein
Sigma-Aldrich
Phosphatase, Alkaline from bovine intestinal mucosa, ≥5,500 DEA units/mg protein
Sigma-Aldrich
Phosphatase, Alkaline from calf intestinal mucosa, suitable for enzyme immunoassay, solution (clear, colorless), ~2500 U/mg protein (~10 mg/ml)
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, sponge, 1-20 mm, 99.5% trace metals basis
Titanium, mesh, 100x100mm, nominal aperture 0.19mm, wire diameter 0.23mm, 60x60 wires/inch, open area 20%, twill weave
Sigma-Aldrich
Phosphatase, Alkaline from porcine kidney, lyophilized powder, ≥100 DEA units/mg protein
Sigma-Aldrich
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Titanium, mesh, 100x100mm, nominal aperture 4.3mm, wire diameter 1.5mm, 4.4x4.4 wires/inch, open area 94%, platinized diamond mesh
Sigma-Aldrich
Phosphatase, Alkaline from Escherichia coli, ammonium sulfate suspension, 30-90 units/mg protein (modified Warburg-Christian, in glycine buffer)
Sigma-Aldrich
Titanium, foil, thickness 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Phosphatase, Alkaline from Escherichia coli, buffered aqueous glycerol solution, 20-50 units/mg protein (in glycine buffer)
Sigma-Aldrich
Titanium, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.995% trace metals basis
Sigma-Aldrich
Phosphatase, Alkaline shrimp, ≥900 DEA units/mL, buffered aqueous glycerol solution, recombinant, expressed in proprietary host
Sigma-Aldrich
Titanium, wire, diam. 1.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.25 mm, 99.99% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Titanium, 5-10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)
Sigma-Aldrich
Phosphatase, Alkaline bovine, recombinant, expressed in Pichia pastoris, ≥4000 units/mg protein
Sigma-Aldrich
Titanium, wire, diam. 0.5 mm, 99.99% trace metals basis
Titanium, wire, straight, 1000mm, diameter 1.0mm, as drawn, 99.6+%