Pular para o conteúdo
Merck
  • Up-regulation and interaction of the plasma membrane H(+)-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress.

Up-regulation and interaction of the plasma membrane H(+)-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress.

Plant physiology and biochemistry : PPB (2013-07-19)
Qi Chen, Chuan-Long Guo, Ping Wang, Xuan-Qin Chen, Kong-Huan Wu, Kui-Zhi Li, Yong-Xiong Yu, Li-Mei Chen
RESUMO

Our previous study showed that citrate excretion coupled with a concomitant release of protons was involved in aluminum (Al) resistance in the broad bean. Furthermore, genes encoding plasma membrane (PM) H(+)-ATPase (vha2) and the 14-3-3 protein (vf14-3-3b) were up-regulated by Al in Al-resistant (YD) broad bean roots. In this study, the roles of PM H(+)-ATPase (E.C. 3.6.3.6) and the 14-3-3 protein in the regulation of citrate secretion were further investigated in Al-resistant (YD) and Al-sensitive (AD) broad bean cultivars under Al stress. The results showed that greater citrate exudation was positively correlated with higher activities of PM H(+)-ATPase in roots of YD than AD. Real-time RT-PCR analysis revealed that vha2 was clearly up-regulated by Al in YD but not in AD roots, whereas the transcription levels of vf14-3-3b were elevated in a time-dependent manner in both YD and AD roots. Immunoprecipitation and Western analysis suggested that phosphorylation and interaction with the vf14-3-3b protein of the VHA2 were enhanced in YD roots but not in AD roots with increasing Al treatment time. Fusicoccin or adenosine 5'-monophosphate increased or decreased the interaction between the phosphorylated VHA2 and the vf14-3-3b protein, followed by an enhancement or reduction of the PM H(+)-ATPase activity and citrate exudation in both cultivars under Al stress conditions, respectively. Taken together, these results suggested that Al enhanced the expression and interaction of the PM H(+)-ATPase and the 14-3-3 protein, which thereby led to higher activity of the PM H(+)-ATPase and more citrate exudation from YD plants.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Ácido cítrico, meets analytical specification of Ph. Eur., BP, USP, E330, anhydrous, 99.5-100.5% (based on anhydrous substance)
Sigma-Aldrich
Ácido cítrico, ACS reagent, ≥99.5%
Sigma-Aldrich
Ácido cítrico, ≥99.5%, FCC, FG
Sigma-Aldrich
Ácido cítrico, anhydrous, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Ácido cítrico, BioUltra, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Ácido cítrico, 99%
Sigma-Aldrich
Aluminum, wire, diam. 1.0 mm, 99.999% trace metals basis
Sigma-Aldrich
Aluminum, granular, <1 mm, 99.7% trace metals basis
Sigma-Aldrich
Aluminum, foil, thickness 0.25 mm, 99.999% trace metals basis
Sigma-Aldrich
Aluminum, pellets, 3-12 mm, 99.99% trace metals basis
Sigma-Aldrich
Aluminum, ReagentPlus®, beads, 5-15 mm, 99.9% trace metals basis
Supelco
Ácido cítrico, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Fusicoccin from Fusicoccum amygdali, ≥85% (HPLC)
Sigma-Aldrich
Aluminum, foil, thickness 0.45-0.55 mm, 99.999% trace metals basis
Sigma-Aldrich
Aluminum, ACS reagent, 99%, wire, wire diam. ~1.5 mm
Sigma-Aldrich
Aluminum, foil, thickness 0.13 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Aluminum, wire, diam. 0.58 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Aluminum, foil, thickness 8 μm, 99% trace metals basis
Sigma-Aldrich
Aluminum, foil, thickness 1.0 mm, 99.999% trace metals basis
Sigma-Aldrich
Adenosine 2′(3′)-monophosphate mixed isomers
Sigma-Aldrich
Aluminum, evaporation slug, diam. × L 6.3 mm × 6.3 mm, 99.999% trace metals basis
Sigma-Aldrich
Aluminum, pellets, 3-8 mesh, ≥99.999% trace metals basis
Supelco
Ácido cítrico, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Aluminum, IRMM®, certified reference material, 0.1 mm foil
Aluminum, IRMM®, certified reference material, 1.0 mm foil
Aluminum, IRMM®, certified reference material, 1.0 mm wire