Pular para o conteúdo
Merck

Platform Effects on Regeneration by Pulmonary Basal Cells as Evaluated by Single-Cell RNA Sequencing.

Cell reports (2020-03-27)
Allison M Greaney, Taylor S Adams, Micha Sam Brickman Raredon, Elise Gubbins, Jonas C Schupp, Alexander J Engler, Mahboobe Ghaedi, Yifan Yuan, Naftali Kaminski, Laura E Niklason
RESUMO

Cell-based therapies have shown promise for treating myriad chronic pulmonary diseases through direct application of epithelial progenitors or by way of engineered tissue grafts or whole organs. To elucidate environmental effects on epithelial regenerative outcomes in vitro, here, we isolate and culture a population of pharmacologically expanded basal cells (peBCs) from rat tracheas. At peak basal marker expression, we simultaneously split peBCs into four in vitro platforms: organoid, air-liquid interface (ALI), engineered trachea, and engineered lung. Following differentiation, these samples are evaluated using single-cell RNA sequencing (scRNA-seq) and computational pipelines are developed to compare samples both globally and at the population level. A sample of native rat tracheal epithelium is also evaluated by scRNA-seq as a control for engineered epithelium. Overall, this work identifies platform-specific effects that support the use of engineered models to achieve the most physiologic differential outcomes in pulmonary epithelial regenerative applications.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Desoxirribonuclease I, lyophilized powder, Protein ≥85 %, ≥400 Kunitz units/mg protein
Sigma-Aldrich
Protease, Type XIV, ≥3.5 units/mg solid, powder
Sigma-Aldrich
Anticorpo anti-prosurfactante proteína C (proSP-C), serum, Chemicon®
Sigma-Aldrich
Anti-FOXJ1 antibody produced in rabbit, affinity isolated antibody