Accéder au contenu
Merck

Quantification of the impact of single and multiple mild stresses on outgrowth heterogeneity of Bacillus cereus spores.

International journal of food microbiology (2014-03-13)
C C J van Melis, H M W den Besten, M N Nierop Groot, T Abee
RÉSUMÉ

Outgrowth heterogeneity of bacterial spore populations complicates both prediction and efficient control of spore outgrowth. In this study, the impact of mild preservation stresses on outgrowth of Bacillus cereus ATCC 14579 spores was quantified during the first stages of outgrowth. Heterogeneity in outgrowth of heat-treated (90°C for 10 min) and non-heat-treated germinated single spores to the maximum micro-colony stage of 256 cells was assessed by direct imaging on Anopore strips, placed on BHI plates at pH7 and pH5.5, without and with added NaCl or sorbic acid (HSA). At pH7 non-heated and heat-treated germinated spores required 6h to reach the maximum microcolony stage with limited heterogeneity, and these parameters were only slightly affected with both types of spores when incubated at pH7 with added NaCl. Notably, the most pronounced effects were observed during outgrowth of spores at pH5.5 without and with added NaCl or HSA. Non-heat-treated germinated spores showed again efficient outgrowth with limited heterogeneity reaching the maximum microcolony stage after 6h at pH5.5, which increased to 12h and 16 h with added NaCl and HSA, respectively. In contrast, heat-treated spores displayed a strong delay between initial germination and swelling and further outgrowth at pH5.5, resulting in large heterogeneity and low numbers of fastest growers reaching the maximum microcolony stage after 10, 12 and 24h, without and with added NaCl or HSA, respectively. This work shows that Anopore technology provides quantitative information on the impact of combined preservation stresses on outgrowth of single spores, showing that outgrowth of germinated heat-treated spores is significantly affected at pH5.5 with a large fraction of spores arrested in the early outgrowth stage, and with outgrowing cells showing large heterogeneity with only a small fraction committed to relatively fast outgrowth.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Chlorure de sodium solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Chlorure de sodium, BioXtra, ≥99.5% (AT)
SAFC
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Chlorure de sodium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Acide sorbique, 99.0-101.0% anhydrous basis
Sigma-Aldrich
Chlorure de sodium, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Chlorure de sodium, 99.999% trace metals basis
Sigma-Aldrich
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Chlorure de sodium, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Supelco
Chlorure de sodium, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Chlorure de sodium, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Chlorure de sodium, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Supelco
Acide sorbique, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Chlorure de sodium, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Chlorure de sodium solution, 0.85%
Sigma-Aldrich
Chlorure de sodium, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Chlorure de sodium, tested according to Ph. Eur.
USP
Acide sorbique, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acide sorbique, tested according to Ph. Eur.
Sigma-Aldrich
Chlorure de sodium, tablet
Acide sorbique, European Pharmacopoeia (EP) Reference Standard