Skip to Content
MilliporeSigma
  • Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

Pharmaceutical research (2014-12-20)
Dominik Gartzke, Jürgen Delzer, Loic Laplanche, Yasuo Uchida, Yutaro Hoshi, Masanori Tachikawa, Tetsuya Terasaki, Jens Sydor, Gert Fricker
ABSTRACT

To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Canine MDR1 Knockout, Human BCRP Knockin MDCKII Cells
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
Urea, ≥99.0%
Sigma-Aldrich
Urea, SAJ first grade, ≥98.0%
Sigma-Aldrich
Urea, JIS special grade, ≥99.0%
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Urea, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
Urea, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
Quinidine, crystallized, ≥98.0% (dried material, NT)
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Quinidine, anhydrous
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets