Skip to Content
MilliporeSigma
  • Stromal cell-derived factor-1 (SDF1)-dependent recruitment of bone marrow-derived renal endothelium-like cells in a mouse model of acute kidney injury.

Stromal cell-derived factor-1 (SDF1)-dependent recruitment of bone marrow-derived renal endothelium-like cells in a mouse model of acute kidney injury.

The Journal of veterinary medical science (2015-04-04)
Hiroyuki Ohnishi, Shinya Mizuno, Yoko Mizuno-Horikawa, Takashi Kato
ABSTRACT

Ischemic acute kidney injury (AKI) is the most key pathological event for accelerating progression to chronic kidney disease through vascular endothelial injury or dysfunction. Thus, it is critical to elucidate the molecular mechanism of endothelial protection and regeneration. Emerging evidence indicates that bone marrow-derived cells (BMCs) contribute to tissue reconstitution in several types of organs post-injury, but little is known whether and how BMCs contribute to renal endothelial reconstitution, especially in an early-stage of AKI. Using a mouse model of ischemic AKI, we provide evidence that incorporation of BMCs in vascular components (such as endothelial and smooth muscle cells) becomes evident within four days after renal ischemia and reperfusion, associated with an increase in stromal cell-derived factor-1 (SDF1) in endothelium and that in CXCR4/SDF1-receptor in BMCs. Notably, anti-CXCR4 antibody decreased the numbers of infiltrated BMCs and BMC-derived endothelium-like cells, but not of BMC-derived smooth muscle cell-like cells. These results suggest that reconstitution of renal endothelium post-ischemia partially depends on a paracrine loop of SDF1-CXCR4 between resident endothelium and BMCs. Such a chemokine ligand-receptor system may be attributable for selecting a cellular lineage (s), required for renal vascular protection, repair and homeostasis, even in an earlier phase of AKI.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Millipore
Urea solution, suitable for microbiology, 40% in H2O
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
Urea, ≥99.0%
Sigma-Aldrich
Urea, JIS special grade, ≥99.0%
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Pimonidazole, ≥98% (HPLC)
Sigma-Aldrich
Urea, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
Urea, SAJ first grade, ≥98.0%
Sigma-Aldrich
3,3′-Diaminobenzidine, 97%
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
3,3′-Diaminobenzidine, 97% (HPLC)
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Urea, European Pharmacopoeia (EP) Reference Standard
USP
Urea, United States Pharmacopeia (USP) Reference Standard
Supelco
Urea, analytical standard