跳轉至內容
Merck
首頁血液學推薦的單核細胞分離標準方法

推薦的單核細胞分離標準方法

使用 Ficoll-Paque 產品進行細胞分離的血液樣本量範圍很廣。由於產率高,此方法可適用於處理非常少量的血液,例如從兒童身上取得的血液。為了達到最大的分離重現性,建議使用標準化的程序。我們的實驗室已使用 Ficoll-Paque PLUS 評估下列程序,並建議用於分離正常血液樣本。可輕鬆進行簡單改變以適應特定的離心系統。使用 Ficoll-Paque PREMIUM、Ficoll-Paque PREMIUM 1.084 和 Ficoll-Paque PREMIUM 1.073 分離細胞時,建議使用相同的程序。

為了使技術標準化,應先選擇血液容量和離心管直徑。這些因素決定了管中血樣的高度,進而決定了離心時間。增加血液樣本在管中的高度會增加紅細胞污染。然而,改變試管直徑對分離效果的影響並不顯著。因此,如果試管中血樣的高度和分離時間保持不變,則可在直徑較大的試管中分離出較大的容量,並達到相同的淨化程度。

單核細胞的產量和純度在相當程度上取決於去除紅細胞的效率。

當全血中的紅細胞聚集時,一些單核細胞會被困在凝塊中,因此與紅細胞一起沉澱。稀釋血液可減少這種困住單核細胞的趨勢。稀釋可增加單核細胞的產量,並減小紅細胞塊的大小。在較高溫度 (37 °C)下,紅細胞的聚集會增加,進而降低單核細胞的產率。但在較低溫度 (4 °C) 下,聚集率會降低,但分離時間會增加,這也會降低單核細胞的產率。18 ºC 至 20 °C 的折衷溫度可獲得最佳結果。

需要但未提供的設備和溶液

  1. 無菌平衡鹽溶液或其他標準鹽溶液(請參閱試劑的製備)。
  2. 帶可擺動轉子的離心機(制動器應關閉)。
  3. 無菌離心管和移液管。
  4. 無菌針和注射器。
  5. 所選紅血球裂解液(如果分離粒細胞)。

試劑的準備

稀釋液和洗滌液
用於稀釋血液和洗滌細胞的平衡鹽溶液可根據以下說明製作。其他稀釋劑和洗滌液,例如等張Ca2+/Mg2+不含磷酸鹽的緩衝生理鹽水(例如Dulbecco「s PBS)、鹽溶液(例如Hank」s)或細胞培養基質(例如、

平衡鹽溶液
製備平衡鹽溶液時,將 1 μL A 原液與 9 μL B 原液混合並滅菌。每個樣品至少應處理 20 mL。也可使用其他無菌標準鹽溶液。

溶於約 950 mL 蒸餾水中,並加入濃縮 HCl 直到 pH 值為 7.6,然後調整容積至 1L.

配製平衡鹽溶液時,將 1 μL A 溶液與 9 μL B 溶液混合。可使用其他標準鹽溶液。

Ficoll-Paque 產品
使用前將 Ficoll-Paque 密度梯度培養基加温至 18 °C 至 20 °C。對於大於 3 mL 的樣品,請參閱注意事項。

樣品的準備
應使用新鮮血液,以確保離體單核細胞的高存活率。

  1. 在 10 mL 離心管中,加入 2 mL 已解纖化或抗凝劑處理過的血液和等量的平衡鹽溶液(最終容量為 4 mL)。

分离单核细胞的步骤

  1. 倒置Ficoll-Paque培养基瓶数次以确保充分混合。
    用注射器抽取Ficoll-Paque培養基:扣開聚丙烯蓋,將注射器針頭插入隔膜(圖1)。
    用移液管抽取Ficoll-Paque培養基:取下扣開的聚丙烯蓋。提起鋁環。拉開金屬密封圈。取下銀環。
    取下橡膠封口。使用無菌技術,抽取所需容量的 Ficoll-Paque 培養基(圖 2)。
  2. 在離心管中加入 Ficoll-Paque 培養基(3 mL)。
  3. 小心地將稀釋的血液樣本(4 mL)鋪在Ficoll-Paque培養基溶液上(圖3)。
    重要: 鋪放樣本時,請勿混合Ficoll-Paque培養基溶液和稀釋的血液樣本。
  4. 在 18 ºC 至 20 °C,以 400 g 離心 30 至 40 分鐘(應關閉剎車器)。
  5. 使用無菌吸管吸去包含血漿和血小板的上層,使單核細胞層在介面處不受干擾(圖 4 和圖 5)。包含血漿的上層可保存以備日後使用。
  6. 使用無菌移液管將單核細胞層移至無菌離心管中。
聚丙烯蓋和銀環拆卸

圖 1.聚丙烯蓋和銀環拆卸

撤銷 Ficoll-Paque 媒介

圖 2.取出 Ficoll-Paque 媒介

血液樣本分層到 Ficoll-Paque 媒介上

圖 3.血液樣本分層到 Ficoll-Paque 媒介上

在移除上層之前。

圖 4.在移除上層之前。

移除上層 (Plasma) 之後。

圖 5.移除上層 (Plasma) 之後。

清洗細胞分離物

  1. 估計轉移的單核細胞體積。在離心管中的單核細胞中加入至少 3 個容量(約 6 mL)的平衡鹽溶液。
  2. 用吸管輕輕地吸入和吸出細胞,使其懸浮。
  3. 在 18 °C 至 20 °C 下以 400 至 500 × g 離心 10 至 15 分鐘。

注意: 高速離心可增加單核細胞回收率。

  1. 移去上清液。
  2. 將單核細胞重悬於 6 至 8 ml 平衡鹽溶液中。
  3. 在 18 °C 至 20 °C 下以 400 至 500 × g 離心(或以 60 至 100 × g 離心以去除血小板)10 分鐘。

分离粒细胞的步骤

  1. 使用Ficoll-Paque培养基进行密度梯度离心,如上文 分离单核细胞的步骤1至6所述。
  2. 使用無菌吸管吸取上層的 Ficoll-Paque 培養基,使紅細胞層上方的粒細胞白細胞層不受干擾。
  3. 用移液管收集薄薄的粒細胞白細胞層,並轉移至無菌離心管中。
  4. 將細胞重懸於至少五容量的平衡鹽溶液中,並以 400 × g 離心 15 分鐘。
  5. 用任選的紅細胞裂解液裂解剩餘的紅細胞。
  6. 在 18 °C 至 20 °C 下以 400 至 500 × g 離心 10 至 15 分鐘。
  7. 移去上清液。
  8. 將顆粒細胞重懸於 6 至 8 ml 平衡鹽溶液中。
  9. 於 18 °C 至 20 °C 下以 400 至 500 × g 離心 10 分鐘。
  10. 移去上清液。
  11. 將細胞顆粒重悬於適合應用的培養基。

注意事項
抗凝劑:
 肝素、EDTA、檸檬酸、酸性檸檬酸葡萄糖(ACD)和檸檬酸磷酸葡萄糖(CPD)可用作血液樣本的抗凝劑。放顫後的血液不需要抗凝劑。然而,去纖化會導致較低的單核細胞產量,並可能增加紅細胞的污染3

Bøyum 發現,使用 EDTA 取代肝素作為抗凝劑3,可以獲得稍微純淨的單核細胞製備3。在純化非外周血來源的單核細胞時,也注意到加入肝素可能會造成細胞懸浮液膠凝4。與其他抗凝劑相比,檸檬酸酯穩定的血液可能會產生更優質的 RNA 和 DNA,並產生更高產量的單核細胞。肝素會影響 T 細胞增殖,並與許多蛋白質結合。EDTA 對於以 DNA 為基礎的檢測很好,但會影響 Mg2+ 的濃度,對於細胞遺傳分析造成問題5。也有研究顯示 EDTA 血液的 RNA 產量比肝素血液高6

血容量: 使用直徑增加的離心管,同時保持與上述標準方法中大致相同的 Ficoll-Paque 媒介(2.4 cm)和血液樣本(3.0 cm)高度,可以以相同的分離效率處理較大容量的血液。增加試管直徑不會影響所需的分離時間。

血液樣本儲存: 血液樣本應在收集後儘快處理,以確保最佳結果。延遲處理血液會導致細胞失去活力、細胞回收率降低,以及污染更多的粒細胞和/或紅細胞。事實上,有報告指出在室溫下儲存 24 小時會導致淋巴細胞產量減少、表面標記表達改變,以及對有細胞分裂刺激的反應降低 5,7,8。去除死細胞:

密度和溫度: 進行密度梯度分離的溫度自然會受到室溫、離心機溫度、密度梯度介質溫度和液體樣品溫度的影響。有時候,室溫的含義也會混淆(例如,在歐洲可能是 20 ºC,而在北美則是 20 ºC)。眾所周知,Ficoll-Paque 產品的密度會隨著溫度的升高而降低。例如,Ficoll-Paque PREMIUM (1.077 g/ml)在 20 ºC、22 ºC 和 25 ºC 時的密度分別為 1.0772、1.0767 和 1.0758。

病理血液樣本: 上述標準方法是針對純化正常、健康、人類捐贈者外周血中的單核細胞而開發的。對於感染或其他病理情況(如癌症)的供血者樣本,可能會得到不同的結果(請參閱 Ficoll-Paque PLUS 和 Ficoll-Paque PREMIUM 的進一步應用,第 12 頁)。

血小板去除: 如果需要去除單核細胞部分中的所有血小板,可在 Ficoll-Paque PLUS 上覆蓋 4% 至 20% 的蔗糖梯度進行第二次離心。此程序將有效去除任何血小板污染11。血小板會留在蔗糖梯度的頂端,而單核細胞會透過蔗糖梯度沉澱到 Ficoll-Paque PLUS 層的頂端。或者,在分離單核細胞12前,可用腺苷-5'-二磷酸(ADP)聚合血小板來去除。

性能不足的故障排除
如果按照推荐的标准程序使用,Ficoll-Paque PLUS 和 Ficoll-Paque PREMIUM 可以无故障地分离人外周血单核细胞,结果如第 2 页所示。如前所述,Ficoll-Paque PREMIUM 1.073 和 Ficoll-Paque PREMIUM 1.084 可分離出密度略有不同的單核細胞。然而,某些實驗參數的偏差可能會導致結果不佳,此處提供的故障排除圖表旨在協助快速識別和糾正導致性能降低的問題。

材料
Loading

參考資料

1.
Böyum A. 1968. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 9777-89.
2.
Böyum A. 1968. Isolation of leucocytes from human blood – further observations. Scand. J. Clin. Lab. Invest. Suppl. 9731–50.
3.
BØYUM A. 1976. Isolation of Lymphocytes, Granulocytes and Macrophages. 59-15. https://doi.org/10.1111/j.1365-3083.1976.tb03851.x
4.
Almeida AP, A. Beaven M. 1980. Gel formation with leucocytes and heparin. Life Sciences. 26(7):549-555. https://doi.org/10.1016/0024-3205(80)90318-5
5.
Holland NT, Smith MT, Eskenazi B, Bastaki M. 2003. Biological sample collection and processing for molecular epidemiological studies. Mutation Research/Reviews in Mutation Research. 543(3):217-234. https://doi.org/10.1016/s1383-5742(02)00090-x
6.
Marteau J, Mohr S, Pfister M, Visvikis-Siest S. 2005. Collection and Storage of Human Blood Cells for mRNA Expression Profiling: A 15-Month Stability Study. 51(7):1250-1252. https://doi.org/10.1373/clinchem.2005.048546
7.
Kaplan J, Nolan D, Reed A. 1982. Altered lymphocyte markers and blastogenic responses associated with 24 hour delay in processing of blood samples. Journal of Immunological Methods. 50(2):187-191. https://doi.org/10.1016/0022-1759(82)90224-1
8.
Imeri F, Herklotz R, Risch L, Arbetsleitner C, Zerlauth M, Risch GM, Huber AR. 2008. Stability of hematological analytes depends on the hematology analyser used: A stability study with Bayer Advia 120, Beckman Coulter LH 750 and Sysmex XE 2100. Clinica Chimica Acta. 397(1-2):68-71. https://doi.org/10.1016/j.cca.2008.07.018
9.
Paietta E. 2003. How to optimize multiparameter flow cytometry for leukaemia/lymphoma diagnosis. Best Practice & Research Clinical Haematology. 16(4):671-683. https://doi.org/10.1016/s1521-6926(03)00070-7
10.
Dolan BP, Gibbs KD, Ostrand-Rosenberg S. 2006. Dendritic Cells Cross-Dressed with Peptide MHC Class I Complexes Prime CD8+ T Cells. J Immunol. 177(9):6018-6024. https://doi.org/10.4049/jimmunol.177.9.6018
11.
Perper RJ, Zee TW, Mickelson MM. 1968. Purification of lymphocytes and platelets by gradient centrifugation. J Lab Clin Med. 72(5):842-8.
12.
VIVES J, PARRA M, CASTILLO R. Platelet Aggregation Technique Used in the Preparation of Lymphocyte Suspensions. 1(6):276-278. https://doi.org/10.1111/j.1399-0039.1971.tb00106.x
13.
Alexander EL, Titus JA, Segal DM. 1978. Quantitation of Fc receptors and surface immunoglobulin is affected by cell isolation procedures using plasmagel and Ficoll-Hypaque. Journal of Immunological Methods. 22(3-4):263-272. https://doi.org/10.1016/0022-1759(78)90034-0
14.
Hokland P, Heron I. 1980. Analysis of the lymphocyte distribution during isopaque-ficoll isolation of mononuclear cells from human peropheral blood. Journal of Immunological Methods. 32(1):31-39. https://doi.org/10.1016/0022-1759(80)90114-3
15.
HOKLAND P, HERON I. 1980. The Isopaque-Ficoll Method Re-evaluated: Selective Loss of Autologous Rosette-forming Lymphocytes during Isolation of Mononuclear Cells from Human Peripheral Blood. Scand J Immunol. 11(3):353-356. https://doi.org/10.1111/j.1365-3083.1980.tb00245.x
16.
AssumpcióRomeu M, Mestre M, González L, Valls A, Verdaguer J, Corominas M, Bas J, Massip E, Buendia E. 1992. Lymphocyte immunophenotyping by flow cytometry in normal adults. Journal of Immunological Methods. 154(1):7-10. https://doi.org/10.1016/0022-1759(92)90206-9
17.
Lin S, Chao H, Yan D, Huang Y. 2002. Expression of adhesion molecules on T lymphocytes in young children and infants - a comparative study using whole blood lysis or density gradient separation. Clin Lab Haematol. 24(6):353-359. https://doi.org/10.1046/j.1365-2257.2002.00462.x
18.
Bain B, Pshyk K. 1973. Reactivity in mixed cultures of mononuclear leucocytes separated on Ficoll-Hypaque. Proceedings 7th Leucocyte Culture Conference; New York Academic Press. p. 29–37.
19.
Wu Y, Lu H, Cai J, He X, Hu Y, Zhao H, Wang X. 2009. Membrane Surface Nanostructures and Adhesion Property of T Lymphocytes Exploited by AFM. Nanoscale Res Lett. 4(8):942-947. https://doi.org/10.1007/s11671-009-9340-8
20.
Guia S, Cognet C, de Beaucoudrey L, Tessmer MS, Jouanguy E, Berger C, Filipe-Santos O, Feinberg J, Camcioglu Y, Levy J, et al. 2008. A role for interleukin-12/23 in the maturation of human natural killer and CD56+ T cells in vivo. 111(10):5008-5016. https://doi.org/10.1182/blood-2007-11-122259
21.
Frelin C. 2005. Targeting NF- B activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. Blood. 105(2):804-811. https://doi.org/10.1182/blood-2004-04-1463
22.
van den Akker ELT, Baan CC, van den Berg B, Russcher H, Joosten K, Hokken-Koelega ACS, Lamberts SWJ, Koper JW. 2008. Ficoll-separated mononuclear cells from sepsis patients are contaminated with granulocytes. Intensive Care Med. 34(5):912-916. https://doi.org/10.1007/s00134-007-0989-0
23.
Chan JK, Hamilton CA, Anderson EM, Cheung MK, Baker J, Husain A, Teng NN, Kong CS, Negrin RS. 2007. A novel technique for the enrichment of primary ovarian cancer cells. American Journal of Obstetrics and Gynecology. 197(5):507.e1-507.e5. https://doi.org/10.1016/j.ajog.2007.05.006
24.
Kluin-Nelemans JC, van-Helden HP. 1980. Non-lymphoid cells obtained by the Böyum technique and their significance in cancer patients. J Clin Lab Immunol. 4(2):99-102.
25.
Minami R, Yokota S, Teplitz RL. 1978. Gradient separation of normal and malignant cells. II. Application to in vivo tumor diagnosis. Acta Cytol. 22(6):584-8.
26.
Chang H, Jones OW, Bradshaw C, Sarkar S, Porreco RP. 1981. Enhancement of human amniotic cell growth by ficoll-paque gradient fractionation. In Vitro. 17(1):81-90. https://doi.org/10.1007/bf02618035
27.
Kekarainen T, Mannelin S, Laine J, Jaatinen T. 2006. BMC Cell Biol. 7(1):30. https://doi.org/10.1186/1471-2121-7-30
28.
Briquet A, Dubois S, Bekaert S, Dolhet M, Beguin Y, Gothot A. 2010. Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica. 95(1):47-56. https://doi.org/10.3324/haematol.2009.008524
29.
Malanga D, Barba P, Harris PE, Maffei A, Del Pozzo G. 2007. The active translation of MHCII mRNA during dendritic cells maturation supplies new molecules to the cell surface pool. Cellular Immunology. 246(2):75-80. https://doi.org/10.1016/j.cellimm.2007.06.003
30.
Ciccocioppo R, Ricci G, Rovati B, Pesce I, Mazzocchi S, Piancatelli D, Cagnoni A, Millimaggi D, Danova M, Corazza GR. Reduced number and function of peripheral dendritic cells in coeliac disease. 149(3):487-496. https://doi.org/10.1111/j.1365-2249.2007.03431.x
31.
Hattar K, van Bürck S, Bickenbach A, Grandel U, Maus U, Lohmeyer J, Csernok E, Hartung T, Seeger W, Grimminger F, et al. 2005. Anti-proteinase 3 antibodies (c-ANCA) prime CD14-dependent leukocyte activation. Journal of Leukocyte Biology. 78(4):992-1000. https://doi.org/10.1189/jlb.0902442
32.
Lubin I, Faktorowich Y, Lapidot T, Gan Y, Eshhar Z, Gazit E, Levite M, Reisner Y. 1991. Engraftment and development of human T and B cells in mice after bone marrow transplantation. Science. 252(5004):427-431. https://doi.org/10.1126/science.1826797
33.
Flaherty MP, Abdel-Latif A, Li Q, Hunt G, Ranjan S, Ou Q, Tang X, Johnson RK, Bolli R, Dawn B. 2008. Noncanonical Wnt11 Signaling Is Sufficient to Induce Cardiomyogenic Differentiation in Unfractionated Bone Marrow Mononuclear Cells. Circulation. 117(17):2241-2252. https://doi.org/10.1161/circulationaha.107.741066
34.
Kawka DW, Ouellet M, Hétu P, Singer II, Riendeau D. 2007. Double-label expression studies of prostacyclin synthase, thromboxane synthase and COX isoforms in normal aortic endothelium. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1771(1):45-54. https://doi.org/10.1016/j.bbalip.2006.09.015
35.
Zhang Y, Lin H, Frimberger D, Epstein RB, Kropp BP. 2005. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int. 96(7):1120-1125. https://doi.org/10.1111/j.1464-410x.2005.05741.x
36.
Yang G, Qiu C, Zhao H, Liu Q, Shao Y. 2006. Expression of mRNA for multiple serotonin (5-HT) receptor types/subtypes by the peripheral blood mononuclear cells of rhesus macaques. Journal of Neuroimmunology. 178(1-2):24-29. https://doi.org/10.1016/j.jneuroim.2006.05.016
37.
Xu R, Jiang X, Guo Z, Chen J, Zou Y, Ke Y, Zhang S, Li Z, Cai Y, Du M, et al. 2008. Functional Analysis of Neuron-like Cells Differentiated from Neural Stem Cells Derived from Bone Marrow Stroma Cells in vitro. Cell Mol Neurobiol. 28(4):545-558. https://doi.org/10.1007/s10571-007-9174-9
38.
Pearson TW, Roelants GE, Lundin LB, Mayor-Withey KS. 1979. The bovine lymphoid system: Binding and stimulation of peripheral blood lymphocytes by lectins. Journal of Immunological Methods. 26(3):271-282. https://doi.org/10.1016/0022-1759(79)90252-7
39.
Yang TJ, Jantzen PA, Williams LF. 1979. Acid alpha-naphthyl acetate esterase: presence of activity in bovine and human T and B lymphocytes. Immunology. 38(1):85–93.
40.
Di Cesare S, Maloney S, Fernandes BF, Martins C, Marshall J, Antecka E, Odashiro AN, Dawson WW, Burnier MN. 2009. The effect of blue light exposure in an ocular melanoma animal model. J Exp Clin Cancer Res. 28(1): https://doi.org/10.1186/1756-9966-28-48
41.
Hueso P, Rocha M. 1978. Comparative study of six methods for lymphocyte isolation from several mammalian sources and determination of their carbohydrate composition. Rev Esp Fisiol. 34(3):339-44.
42.
Li X, Zhong Z, Liang S, Wang X, Zhong F. 2009. Effect of cryopreservation on IL-4, IFN? and IL-6 production of porcine peripheral blood lymphocytes. Cryobiology. 59(3):322-326. https://doi.org/10.1016/j.cryobiol.2009.09.004
43.
Blaxhall PC. 1981. A comparison of methods used for the separation of fish lymphocytes. J Fish Biology. 18(2):177-181. https://doi.org/10.1111/j.1095-8649.1981.tb02812.x
44.
Brandslund I, Rasmussen JM, Fisker D, Svehag S. 1982. Separation of human peripheral blood monocytes on continuous density gradients of polyvinylpyrrolidone-coated silica gel (Percoll®). Journal of Immunological Methods. 48(2):199-211. https://doi.org/10.1016/0022-1759(82)90194-6
45.
Feucht H, Hadam M, Frank F, Riethmüller G. 1980. Efficient separation of human T lymphocytes from venous blood using PVP-coated colloidal silica particles (Percoll). Journal of Immunological Methods. 38(1-2):43-51. https://doi.org/10.1016/0022-1759(80)90329-4
46.
Mizobe F, Martial E, Colby-Germinario S, Livett BG. 1982. An improved technique for the isolation of lymphocytes from small volumes of peripheral mouse blood. Journal of Immunological Methods. 48(3):269-279. https://doi.org/10.1016/0022-1759(82)90327-1
47.
Sato J, Kawano Y, Takaue Y, Hirao A, Makimoto A, Okamoto Y, Abe T, Kuroda Y, Shimokawa T, Iwai A. 1995. Quantitative and qualitative comparative analysis of gradient‐separated hematopoietic cells from cord blood and chemotherapy‐mobilized peripheral blood. Stem Cells. 13(5):548-555. https://doi.org/10.1002/stem.5530130513
48.
EU GMP Annex 1: Manufacture of Sterile Medicinal Products. [Internet].[updated 10 Jan 2008]. Available from: https://www.gmp-compliance.org/guidemgr/files/annex%2001[2008].pdf
49.
<1043> ANCILLARY MATERIALS FOR CELL, GENE, AND TISSUE-ENGINEERED PRODUCTS. [Internet]. Available from: https://www.drugfuture.com/Pharmacopoeia/USP32/pub/data/v32270/usp32nf27s0_c1043
50.
Leene W, Roholl PJM, Hoeben KA. 1982. Lymphocyte Differentiation in the Rabbit Thymus.319-325. https://doi.org/10.1007/978-1-4684-9066-4_44
51.
BOYUM A, LOVHAUG D, TRESLAND L, NORDLIE EM. 1991. Separation of Leucocytes: Improved Cell Purity by Fine Adjustments of Gradient Medium Density and Osmolality. Scand J Immunol. 34(6):697-712. https://doi.org/10.1111/j.1365-3083.1991.tb01594.x
52.
Archambault D, Morin G, Elazhary M. 1988. Isolation of bovine colostral lymphocytes: in vitro blastogenic responsiveness to concanavalin A and bovine rotavirus. Ann Rech Vet. 19(3):169-74.
53.
Van Riper G, Siciliano S, Fischer PA, Meurer R, Springer MS, Rosen H. 1993. Characterization and species distribution of high affinity GTP-coupled receptors for human rantes and monocyte chemoattractant protein 1.. 177(3):851-856. https://doi.org/10.1084/jem.177.3.851
54.
Chin S, Poey AC, Wong C, Chang S, Teh W, Mohr TJ, Cheong S. 2010. Cryopreserved mesenchymal stromal cell treatment is safe and feasible for severe dilated ischemic cardiomyopathy. Cytotherapy. 12(1):31-37. https://doi.org/10.3109/14653240903313966
55.
Garayoa M, Garcia JL, Santamaria C, Garcia-Gomez A, Blanco JF, Pandiella A, Hernández JM, Sanchez-Guijo FM, del Cañizo M, Gutiérrez NC, et al. 2009. Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia. 23(8):1515-1527. https://doi.org/10.1038/leu.2009.65
56.
Grisendi G, Annerén C, Cafarelli L, Sternieri R, Veronesi E, Cervo GL, Luminari S, Maur M, Frassoldati A, Palazzi G, et al. 2010. GMP-manufactured density gradient media for optimized mesenchymal stromal/stem cell isolation and expansion. Cytotherapy. 12(4):466-477. https://doi.org/10.3109/14653241003649510
57.
Brooke G, Rossetti T, Pelekanos R, Ilic N, Murray P, Hancock S, Antonenas V, Huang G, Gottlieb D, Bradstock K, et al. 2009. Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. 144(4):571-579. https://doi.org/10.1111/j.1365-2141.2008.07492.x
58.
Miltenyi S, Müller W, Weichel W, Radbruch A. 1990. High gradient magnetic cell separation with MACS. Cytometry. 11(2):231-238. https://doi.org/10.1002/cyto.990110203
59.
Mauldin JP, Nagelin MH, Wojcik AJ, Srinivasan S, Skaflen MD, Ayers CR, McNamara CA, Hedrick CC. 2008. Reduced Expression of ATP-Binding Cassette Transporter G1 Increases Cholesterol Accumulation in Macrophages of Patients With Type 2 Diabetes Mellitus. Circulation. 117(21):2785-2792. https://doi.org/10.1161/circulationaha.107.741314
60.
Ali H, Jurga M, Kurgonaite K, Forraz N, McGuckin C. 2009. Defined serum-free culturing conditions for neural tissue engineering of human cord blood stem cells. Acta Neurobiol Exp (Wars). 69(1):12-23.
61.
Figueroa-Tentori D, Querol S, Dodi IA, Madrigal A, Duggleby R. 2008. High purity and yield of natural Tregs from cord blood using a single step selection method. Journal of Immunological Methods. 339(2):228-235. https://doi.org/10.1016/j.jim.2008.09.019
登入以繼續

若要繼續閱讀,請登入或建立帳戶。

還沒有帳戶?