跳轉至內容
Merck
  • HDACs Regulate miR-133a Expression in Pressure Overload-Induced Cardiac Fibrosis.

HDACs Regulate miR-133a Expression in Pressure Overload-Induced Cardiac Fibrosis.

Circulation. Heart failure (2015-09-16)
Ludivine Renaud, Lillianne G Harris, Santhosh K Mani, Harinath Kasiganesan, James C Chou, Catalin F Baicu, An Van Laer, Adam W Akerman, Robert E Stroud, Jeffrey A Jones, Michael R Zile, Donald R Menick
摘要

MicroRNAs (miRNAs) and histone deacetylases (HDACs) serve a significant role in the pathogenesis of a variety of cardiovascular diseases. The transcriptional regulation of miRNAs is poorly understood in cardiac hypertrophy. We investigated whether the expression of miR-133a is epigenetically regulated by class I and IIb HDACs during hypertrophic remodeling. Transverse aortic constriction (TAC) was performed in CD1 mice to induce pressure overload hypertrophy. Mice were treated with class I and IIb HDAC inhibitor (HDACi) via drinking water for 2 and 4 weeks post TAC. miRNA expression was determined by real-time polymerase chain reaction. Echocardiography was performed at baseline and post TAC end points for structural and functional assessment. Chromatin immunoprecipitation was used to identify HDACs and transcription factors associated with miR-133a promoter. miR-133a expression was downregulated by 0.7- and 0.5-fold at 2 and 4 weeks post TAC, respectively, when compared with vehicle control (P<0.05). HDAC inhibition prevented this significant decrease 2 weeks post TAC and maintained miR-133a expression near vehicle control levels, which coincided with (1) a decrease in connective tissue growth factor expression, (2) a reduction in cardiac fibrosis and left atrium diameter (marker of end-diastolic pressure), suggesting an improvement in diastolic function. Chromatin immunoprecipitation analysis revealed that HDAC1 and HDAC2 are present on the miR-133a enhancer regions. The results reveal that HDACs play a role in the regulation of pressure overload-induced miR-133a downregulation. This work is the first to provide insight into an epigenetic-miRNA regulatory pathway in pressure overload-induced cardiac fibrosis.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
二氯甲烷, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
二氯甲烷, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
二氯甲烷, puriss. p.a., ACS reagent, reag. ISO, ≥99.9% (GC)
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, ≥98.0% (titration)
Sigma-Aldrich
抗 α-微管蛋白单克隆抗体 小鼠抗, clone DM1A, ascites fluid
SAFC
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇
Sigma-Aldrich
二氯甲烷, puriss., meets analytical specification of Ph. Eur., NF, ≥99% (GC)
Sigma-Aldrich
二氯甲烷, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
二氯甲烷, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
7-氨基-4-甲基香豆素, 99%
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioXtra, ≥98.0% (titration)
Sigma-Aldrich
7-氨基-4-甲基香豆素, Chromophore for substrates
Sigma-Aldrich
二氯甲烷, biotech. grade, 99.9%, contains 40-150 ppm amylene as stabilizer
SAFC
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇
Sigma-Aldrich
抗组蛋白H3抗体, 0.5 mg/mL, Upstate®
Sigma-Aldrich
二氯甲烷, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer