跳轉至內容
Merck
  • Midkine-deficiency delays chondrogenesis during the early phase of fracture healing in mice.

Midkine-deficiency delays chondrogenesis during the early phase of fracture healing in mice.

PloS one (2015-01-01)
Melanie Haffner-Luntzer, Aline Heilmann, Anna Elise Rapp, Simon Beie, Thorsten Schinke, Michael Amling, Anita Ignatius, Astrid Liedert
摘要

The growth and differentiation factor midkine (Mdk) plays an important role in bone development and remodeling. Mdk-deficient mice display a high bone mass phenotype when aged 12 and 18 months. Furthermore, Mdk has been identified as a negative regulator of mechanically induced bone formation and it induces pro-chondrogenic, pro-angiogenic and pro-inflammatory effects. Together with the finding that Mdk is expressed in chondrocytes during fracture healing, we hypothesized that Mdk could play a complex role in endochondral ossification during the bone healing process. Femoral osteotomies stabilized using an external fixator were created in wildtype and Mdk-deficient mice. Fracture healing was evaluated 4, 10, 21 and 28 days after surgery using 3-point-bending, micro-computed tomography, histology and immunohistology. We demonstrated that Mdk-deficient mice displayed delayed chondrogenesis during the early phase of fracture healing as well as significantly decreased flexural rigidity and moment of inertia of the fracture callus 21 days after fracture. Mdk-deficiency diminished beta-catenin expression in chondrocytes and delayed presence of macrophages during early fracture healing. We also investigated the impact of Mdk knockdown using siRNA on ATDC5 chondroprogenitor cells in vitro. Knockdown of Mdk expression resulted in a decrease of beta-catenin and chondrogenic differentiation-related matrix proteins, suggesting that delayed chondrogenesis during fracture healing in Mdk-deficient mice may be due to a cell-autonomous mechanism involving reduced beta-catenin signaling. Our results demonstrated that Mdk plays a crucial role in the early inflammation phase and during the development of cartilaginous callus in the fracture healing process.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
L-谷氨酰胺, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-谷氨酰胺, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
亚硒酸钠, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
亚硒酸钠, 99%
SAFC
L-谷氨酰胺
Sigma-Aldrich
亚硒酸钠, γ-irradiated, lyophilized powder, BioXtra, suitable for cell culture
Sigma-Aldrich
苯乙酸, 99%
Sigma-Aldrich
L-谷氨酰胺, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
苯乙酸, ≥99%, FCC, FG
Sigma-Aldrich
L-谷氨酰胺, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-谷氨酰胺
Sigma-Aldrich
亚硒酸钠, anhydrous, ≥90.0% (RT)
Supelco
L-谷氨酰胺, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-谷氨酰胺, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland