跳轉至內容
Merck
  • Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the Alox15 gene does not rescue such knock-in mice.

Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the Alox15 gene does not rescue such knock-in mice.

Antioxidants & redox signaling (2014-10-15)
Simone Hanna Brütsch, Chi Chiu Wang, Lu Li, Hannelore Stender, Nilgün Neziroglu, Constanze Richter, Hartmut Kuhn, Astrid Borchert
摘要

Glutathione peroxidases (Gpx) and lipoxygenases (Alox) are functional counterplayers in the metabolism of hydroperoxy lipids that regulate cellular redox homeostasis. Gpx4 is a moonlighting protein that has been implicated not only as an enzyme in anti-oxidative defense, gene expression regulation, and programmed cell death, but also as a structural protein in spermatogenesis. Homozygous Gpx4 knock-out mice are not viable, but molecular reasons for intrauterine lethality are not completely understood. This study was aimed at investigating whether the lack of catalytic activity or the impaired function as structural protein is the dominant reason for embryonic lethality. We further explored whether the pro-oxidative enzyme mouse 12/15 lipoxygenase (Alox15) plays a major role in embryonic lethality of Gpx4-deficient mice. To achieve these goals, we first created knock-in mice, which express a catalytically inactive Gpx4 mutant (Sec46Ala). As homozygous Gpx4-knock-out mice Sec46Ala-Gpx4(+/+) knock-in animals are not viable but undergo intrauterine resorption between embryonic day 6 and 7 (E6-7). In contrast, heterozygous knock-in mice (Sec46Ala-Gpx4(-/+)) are viable, fertile and do not show major phenotypic alterations. Interestingly, homozygous Alox15 deficiency did not rescue the U46A-Gpx4(+/+) mice from embryonic lethality. In fact, when heterozygous U46A-Gpx4(-/+) mice were stepwise crossed into an Alox15-deficent background, no viable U46A-Gpx4(+/+)+Alox15(-/-) individuals were obtained. However, we were able to identify U46A-Gpx4(+/+)+Alox15(-/-) embryos in the state of resorption around E7. These data suggest that the lack of catalytic activity is the major reason for the embryonic lethality of Gpx4(-/-) mice and that systemic inactivation of the Alox15 gene does not rescue homozygous knock-in mice expressing catalytically silent Gpx4.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
硼氢化钠, powder, ≥98.0%
Sigma-Aldrich
氯霉素,大包装, ≥98% (HPLC)
Sigma-Aldrich
硼氢化钠, ReagentPlus®, 99%
Sigma-Aldrich
利福平, ≥95% (HPLC), powder or crystals
Sigma-Aldrich
氨苄西林, anhydrous, 96.0-102.0% (anhydrous basis)
Sigma-Aldrich
硒, powder, −100 mesh, 99.99% trace metals basis
Sigma-Aldrich
硒, powder, −100 mesh, ≥99.5% trace metals basis
Sigma-Aldrich
硼氢化钠, granular, 99.99% trace metals basis
Sigma-Aldrich
氯霉素,大包装, BioReagent, suitable for plant cell culture
Sigma-Aldrich
花生四烯酸, >95.0% (GC)
Sigma-Aldrich
硼氢化钠, purum p.a., ≥96% (gas-volumetric)
Sigma-Aldrich
花生四烯酸, from non-animal source, ≥98.5% (GC)
Sigma-Aldrich
利福平, suitable for plant cell culture, BioReagent, ≥95% (HPLC), powder or crystals
Sigma-Aldrich
异丙基 β-D-硫代半乳糖吡喃糖苷 溶液, ReadyMade IPTG solution for Blue-white screening
Sigma-Aldrich
IPTG, ≥99% (TLC), ≤0.1% Dioxane
Sigma-Aldrich
硼氢化钠 溶液, ~12 wt. % in 14 M NaOH
Sigma-Aldrich
硼氢化钠, granular, 10-40 mesh, 98%
Sigma-Aldrich
DL-半胱氨酸, technical grade
Sigma-Aldrich
异丙基β-D-1-硫代吡喃半乳糖苷, ≥99% (TLC)
SAFC
异丙基β-D-1-硫代吡喃半乳糖苷
Sigma-Aldrich
硒, pellets, <5 mm particle size, ≥99.999% trace metals basis
Sigma-Aldrich
硒, pellets, <5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
氯霉素,大包装, meets USP testing specifications
Sigma-Aldrich
硼氢化钠, caplets (18 × 10 × 8 mm), 98%
USP
氨苄西林, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
硼氢化钠 溶液, 2.0 M in triethylene glycol dimethyl ether
Sigma-Aldrich
2-苯基吲哚, technical grade, 95%
Sigma-Aldrich
VenPure® SF, powder
Supelco
氨苄西林, analytical standard
Sigma-Aldrich
氨苄西林, meets USP testing specifications