跳轉至內容
Merck
  • The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part I, free volume and glass transition.

The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part I, free volume and glass transition.

Pharmaceutical research (2014-08-12)
Jinjiang Li, Junshu Zhao, Li Tao, Jennifer Wang, Vrushali Waknis, Duohai Pan, Mario Hubert, Krishnaswamy Raghavan, Jatin Patel
摘要

To investigate the structural effect of polymeric excipients on the behavior of free volume of drug-polymer dispersions in relation to glass transition. Two drugs (indomethacin and ketoconazole) were selected to prepare amorphous dispersions with PVP, PVPVA, HPC, and HPMCAS through spray drying. The physical attributes of the dispersions were characterized using SEM and PXRD. The free volume (hole-size) of the dispersions along with drugs and polymers was measured using positron annihilation lifetime spectroscopy (PALS). Their glass transition temperatures (Tgs) were determined using DSC and DMA. FTIR spectra were recorded to identify hydrogen bonding in the dispersions. The chain structural difference-flexible (PVP and PVPVA) vs. inflexible (HPC and HPMCAS)-significantly impacts the free volume and Tgs of the dispersions as well as their deviation from ideality. Relative to Tg, free volume seems to be a better measure of hydrogen bonding interaction for the dispersions of PVP, HPC, and HPMCAS. The free volume of polymers and their dispersions in general appears to be related to their conformations in solution. Both the backbone chain rigidity of polymers as well as drug-polymer interaction can impact the free volume and glass transition behaviors of the dispersions.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
丙酮, ACS reagent, ≥99.5%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
丙酮, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
丙酮, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
丙酮, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
丙酮, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
丙酮, suitable for HPLC, ≥99.8%
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
丙酮, ACS reagent, ≥99.5%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
甲醇, Absolute - Acetone free
USP
丙酮, United States Pharmacopeia (USP) Reference Standard
USP
木精, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
丙酮, histological grade, ≥99.5%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
丙酮, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
甲醇, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
丙酮, ≥99%, meets FCC analytical specifications
Supelco
丙酮, analytical standard
Supelco
甲醇, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
甲醇, analytical standard
Sigma-Aldrich
甲醇, NMR reference standard
Supelco
丙酮, Pharmaceutical Secondary Standard; Certified Reference Material