跳轉至內容
Merck
  • Paracrine Role for Somatostatin Interneurons in the Assembly of Perisomatic Inhibitory Synapses.

Paracrine Role for Somatostatin Interneurons in the Assembly of Perisomatic Inhibitory Synapses.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2020-08-28)
Jianmin Su, Danielle Basso, Shivani Iyer, Kaiwen Su, Jessica Wei, Michael A Fox
摘要

GABAergic interneurons represent a heterogenous group of cell types in neocortex that can be clustered based on developmental origin, morphology, physiology, and connectivity. Two abundant populations of cortical GABAergic interneurons include the low-threshold, somatostatin (SST)-expressing cells and the fast-spiking, parvalbumin (PV)-expressing cells. While SST+ and PV+ interneurons are both early born and migrate into the developing neocortex at similar times, SST+ cells are incorporated into functional circuits prior to PV+ cells. During this early period of neural development, SST+ cells play critical roles in the assembly and maturation of other cortical circuits; however, the mechanisms underlying this process remain poorly understood. Here, using both sexes of conditional mutant mice, we discovered that SST+ interneuron-derived Collagen XIX, a synaptogenic extracellular matrix protein, is required for the formation of GABAergic, perisomatic synapses by PV+ cells. These results, therefore, identify a paracrine mechanism by which early-born SST+ cells orchestrate inhibitory circuit formation in the developing neocortex.SIGNIFICANCE STATEMENT Inhibitory interneurons in the cerebral cortex represent a heterogenous group of cells that generate the inhibitory neurotransmitter GABA. One such interneuron type is the low-threshold, somatostatin (SST)-expressing cell, which is one of the first types of interneurons to migrate into the cerebral cortex and become incorporated into functional circuits. In addition, to contributing important roles in controlling the flow of information in the adult cerebral cortex, SST+ cells play important roles in the development of other neural circuits in the developing brain. Here, we identified an extracellular matrix protein that is released by these early-born SST+ neurons to orchestrate inhibitory circuit formation in the developing cerebral cortex.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
抗GAD67抗体,克隆1G10.2, clone 1G10.2, Chemicon®, from mouse
Roche
抗-地高辛-POD,Fab片段, from sheep
Sigma-Aldrich
抗Cre重组酶抗体,克隆2D8, ascites fluid, clone 2D8, Chemicon®
Sigma-Aldrich
抗小清蛋白抗体, ascites fluid, clone PARV-19, Chemicon®
Roche
抗荧光素-POD Fab片段, from sheep
Sigma-Aldrich
预杂交溶液, for Northern and Southern blotting, liquid (2x concentrate)