跳轉至內容
Merck
全部照片(5)

文件

HPA020028

Sigma-Aldrich

Anti-RYR2 antibody produced in rabbit

enhanced validation

Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution

同義詞:

Anti-Cardiac muscle ryanodine receptor-calcium release channel, Anti-Cardiac muscle-type ryanodine receptor, Anti-RYR-2, Anti-RyR2, Anti-Ryanodine receptor 2, Anti-hRYR-2

登入查看組織和合約定價


About This Item

分類程式碼代碼:
12352203
人類蛋白質圖譜編號:
NACRES:
NA.41

生物源

rabbit

共軛

unconjugated

抗體表格

affinity isolated antibody

抗體產品種類

primary antibodies

無性繁殖

polyclonal

產品線

Prestige Antibodies® Powered by Atlas Antibodies

形狀

buffered aqueous glycerol solution

物種活性

human

加強驗證

orthogonal RNAseq
Learn more about Antibody Enhanced Validation

技術

immunohistochemistry: 1:500-1:1,000

免疫原序列

QDEVRGDGEEGERKPLEAALPSEDLTDLKELTEESDLLSDIFGLDLKREGGQYKLIPHNPNAGLSDLMSNPVPMPEVQEKFQEQKAKEEEKEEKEETKSEPE

UniProt登錄號

運輸包裝

wet ice

儲存溫度

−20°C

目標翻譯後修改

unmodified

基因資訊

human ... RYR2(6262)

一般說明

RYR2 (ryanodine receptor 2) is an intracellular Ca2+ release channel present on the sarcoplasmic reticulum (SR).
RYR2 gene is located at the human chromosome location 1q43. It is majorly expressed in the brain and heart.

免疫原

Ryanodine receptor 2 recombinant protein epitope signature tag (PrEST)

應用

All Prestige Antibodies Powered by Atlas Antibodies are developed and validated by the Human Protein Atlas (HPA) project and as a result, are supported by the most extensive characterization in the industry.

The Human Protein Atlas project can be subdivided into three efforts: Human Tissue Atlas, Cancer Atlas, and Human Cell Atlas. The antibodies that have been generated in support of the Tissue and Cancer Atlas projects have been tested by immunohistochemistry against hundreds of normal and disease tissues and through the recent efforts of the Human Cell Atlas project, many have been characterized by immunofluorescence to map the human proteome not only at the tissue level but now at the subcellular level. These images and the collection of this vast data set can be viewed on the Human Protein Atlas (HPA) site by clicking on the Image Gallery link. We also provide Prestige Antibodies® protocols and other useful information.

生化/生理作用

RYR2 (ryanodine receptor 2) provides guidance to the release and transport of Ca2+ from sarcoplasmic reticulum (SR) to the cytoplasm during cardiac muscle excitation-contraction (EC) coupling. Protein kinase A (PKA) phosphorylated RYR2 separates (FKBP12.6) to regulate the channel open probability (Po). During the process, a small portion of Ca2+ enter into the cell through the L-type Ca2+ channel, which further activates the RyR2 channel upon membrane depolarization. The activated RyR2 channel releases a large amount of Ca2+ from the SR and subsequent muscle contraction. Missense mutations in this gene cause Kazakh idiopathic ventricular tachycardia and arrhythmogenic right ventricular dysplasia.

特點和優勢

Prestige Antibodies® are highly characterized and extensively validated antibodies with the added benefit of all available characterization data for each target being accessible via the Human Protein Atlas portal linked just below the product name at the top of this page. The uniqueness and low cross-reactivity of the Prestige Antibodies® to other proteins are due to a thorough selection of antigen regions, affinity purification, and stringent selection. Prestige antigen controls are available for every corresponding Prestige Antibody and can be found in the linkage section.

Every Prestige Antibody is tested in the following ways:
  • IHC tissue array of 44 normal human tissues and 20 of the most common cancer type tissues.
  • Protein array of 364 human recombinant protein fragments.

聯結

Corresponding Antigen APREST73317

外觀

Solution in phosphate-buffered saline, pH 7.2, containing 40% glycerol and 0.02% sodium azide

法律資訊

Prestige Antibodies is a registered trademark of Merck KGaA, Darmstadt, Germany

免責聲明

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

Not finding the right product?  

Try our 產品選擇工具.

儲存類別代碼

10 - Combustible liquids

水污染物質分類(WGK)

WGK 1

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析證明 (COA)

輸入產品批次/批號來搜索 分析證明 (COA)。在產品’s標籤上找到批次和批號,寫有 ‘Lot’或‘Batch’.。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2
Peng W, et al.
Science, 354(6310), aah5324-aah5324 (2016)
Siew Mei Yap et al.
Seizure, 67, 11-14 (2019-03-09)
Ryanodine receptor 2 (RYR2) mutation is well-established in the aetiology of an inherited cardiac disorder known as catecholaminergic polymorphic ventricular tachycardia (CPVT). The RYR2 receptor is expressed in cardiomyocytes, and also in the hippocampus. The RYR2 mutation has not been
Michelle L Munro et al.
Frontiers in cell and developmental biology, 9, 633704-633704 (2021-03-16)
The release of Ca2+ by ryanodine receptor (RyR2) channels is critical for cardiac function. However, abnormal RyR2 activity has been linked to the development of arrhythmias, including increased spontaneous Ca2+ release in human atrial fibrillation (AF). Clustering properties of RyR2
Claire Poulet et al.
Cardiovascular research (2020-02-14)
In cardiomyocytes, transverse tubules (T-tubules) associate with the sarcoplasmic reticulum (SR), forming junctional membrane complexes (JMCs) where L-type calcium channels (LTCCs) are juxtaposed to Ryanodine receptors (RyR). Junctophilin-2 (JPH2) supports the assembly of JMCs by tethering T-tubules to the SR
Miriam E Hurley et al.
Methods (San Diego, Calif.), 193, 27-37 (2020-10-16)
Nanometre-scale cellular information obtained through super-resolution microscopies are often unaccompanied by functional information, particularly transient and diffusible signals through which life is orchestrated in the nano-micrometre spatial scale. We describe a correlative imaging protocol which allows the ubiquitous intracellular second

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務