跳轉至內容
Merck
全部照片(2)

Key Documents

934739

Sigma-Aldrich

Sodium manganese oxide

greener alternative

electrode sheet, aluminum substrate, size 5 in. × 10 in.

同義詞:

Manganese oxide cathode, Sodium-ion battery cathode

登入查看組織和合約定價


About This Item

經驗公式(希爾表示法):
Na0.44MnO2
分子量::
97.05
分類程式碼代碼:
26111700
NACRES:
NA.21

材料

aluminum substrate

品質等級

等級

battery grade

描述

2.5 V vs Na/Na+
Application: Battery Manufacturing

化驗

≥98%

形狀

sheet

成份

Active material loading 8.6 mg/cm2 ± 5%

環保替代產品特色

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

尺寸

5 in. × 10 in.

厚度

16 μm , aluminum current collector
25-50 μm
72-80 μm , excluding current collector

粒徑

1-2 μm (active material characteristic)

容量

0.90 mAh/cm2±5 % (Areal capacity)

應用

battery manufacturing

環保替代類別

相關類別

一般說明

Sodium manganese oxide (Na0.44MnO2) electrode sheet is a ready-to-use cathode for sodium-ion battery research. The film is 5 inches x 10 inches (127 mm x 254 mm) and cast single-sided on a 16 µm thick aluminum foil current collector. The composition is 90% sodium manganese oxide (Na0.44MnO2), 5% Poly(vinylidene fluoride) [PVDF] and 5% carbon black. The active material is tunnel-type sodium manganese oxide, which offers fast sodium ionic conductivity and high chemical stability. PVDF acts as binder due to its thermal and electrochemical stability and carbon black boosts the electronic conductivity.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

應用

The primary application of our sodium manganese oxide (Na0.44MnO2) electrode sheet is as a cathode for sodium-ion battery research. Manganese-based compounds are widely investigated as cathode materials for rechargeable Na-ion batteries and, in particular, tunnel-type sodium manganese oxide (Na0.44MnO2) is a promising cathode material due to its high capacity, low cost, and non-toxicity. In addition, its unique tunnel structure facilitates excellent cycle and rate performance. For example, our sodium manganese oxide showed a large capacity (experimentally 110 mAh g−1 at 0.1C), even at fast charge rates (80 mAh g-1 at 5C, 72%). In addition, Na0.44MnO2 shows excellent stability with a variety of electrolytes including NaClO4 and NaPF6-based organic electrolytes.

儲存類別代碼

13 - Non Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析證明 (COA)

輸入產品批次/批號來搜索 分析證明 (COA)。在產品’s標籤上找到批次和批號,寫有 ‘Lot’或‘Batch’.。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Electrode Materials for Sodium-Ion Batteries
Kim H, et al.
Advanced Energy Materials, 6 (2016)
High-Performance Na0.44MnO2 Slabs for Sodium-Ion Batteries Obtained through Urea-Based Solution Combustion Synthesis
Ferrara C, et al.
Lithium-Ion Batteries, 4 (2018)
Xingde Xiang et al.
Advanced materials (Deerfield Beach, Fla.), 27(36), 5343-5364 (2015-08-15)
Sodium-ion batteries (SIBs) receive significant attention for electrochemical energy storage and conversion owing to their wide availability and the low cost of Na resources. However, SIBs face challenges of low specific energy, short cycling life, and insufficient specific power, owing

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務