跳轉至內容
Merck
全部照片(2)

重要文件

934682

Sigma-Aldrich

NMC532

greener alternative

electrode sheet, aluminum substrate, size 5 in. × 10 in.

同義詞:

Lithium nickel manganese cobalt oxide, NMC 532 cathode

登入查看組織和合約定價


About This Item

經驗公式(希爾表示法):
LiNi0.5Mn0.3Co0.2O2
分子量::
96.55
分類程式碼代碼:
26111700
NACRES:
NA.21

材料

aluminum substrate (current collector)

品質等級

等級

battery grade

描述

3.75 V vs. Li/Li+

化驗

≥98% (active material characteristic)

成份

Active material loading 12.1 mg/cm2 ± 5%

環保替代產品特色

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

尺寸

16 μm , aluminum current collector
5 in. × 10 in.
70 μm , excluding current collector

樣品平均尺寸

8-12 μm (active material characteristic)

容量

165 mAh/g±5 % (Nominal discharge)
2.0 mAh/cm2±5 % (Areal)

應用

battery manufacturing

環保替代類別

一般說明

NMC532, electrode sheet, aluminum substrate, is a ready-to-use cathode for lithium-ion battery research. NMC532 is a quaternary lithium metal oxide, with the formula LiNi0.5Mn0.3Co0.2O2, and is a state-of-the-art cathode material for lithium-ion batteries that offers high energy density and cycle lifetimes. The composition of our cathode film is 90% active material, 5% PVDF binder, 5% Carbon black.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

應用

The main application of our NMC532 electrode sheet is as a cathode for next-generation lithium-ion batteries (LIBs). The 532 refers to the ratio of metals in the active material that combine to give the high performance: nickel provides high energy density while the manganese and cobalt help to stabilize the spinel crystal structure to extend the cycle lifetime at moderate-high operating temperatures. As a result, our cathode sheet achieves high capacity (>155 mAh/g gravimetric capacity, 2.0 mAh/cm2 areal capacity) and long cycle lifetimes, while offering a high nominal voltage of 3.75 V vs. Li/Li+. NMC532 is the optimal composition to maintain the good thermal stability of low-nickel compositions (e.g. NMC111), while also having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The recommended charge rate for our sheet is 1 °C and discharge rate up to 5 °C.

象形圖

Health hazardExclamation mark

訊號詞

Warning

危險聲明

危險分類

Carc. 2 - Skin Sens. 1

儲存類別代碼

13 - Non Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


從最近期的版本中選擇一個:

分析證明 (COA)

Lot/Batch Number

未看到正確版本?

如果您需要一個特定的版本,您可以透過批號來尋找特定憑證。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Arumugam Manthiram
ACS central science, 3(10), 1063-1069 (2017-11-07)
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters-energy, power
Peiyu Hou et al.
Small (Weinheim an der Bergstrasse, Germany), 13(45), 1701802-1701802 (2017-10-05)
The urgent prerequisites of high energy-density and superior electrochemical properties have been the main inspiration for the advancement of cathode materials in lithium-ion batteries (LIBs) in the last two decades. Nickel-rich layered transition-metal oxides with large reversible capacity as well
Seong-Min Bak et al.
ACS applied materials & interfaces, 6(24), 22594-22601 (2014-11-25)
Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time-resolved X-ray diffraction and mass spectroscopy

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務