跳轉至內容
Merck
全部照片(1)

重要文件

934291

Sigma-Aldrich

Thalidomide-O-amido-C8-NH2 trifluoroacetate

≥95.0%

同義詞:

N-(8-Aminooctyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate

登入查看組織和合約定價


About This Item

經驗公式(希爾表示法):
C23H30N4O6·C2HF3O2
CAS號碼:
分子量::
572.53
MDL號碼:
分類程式碼代碼:
12352200
NACRES:
NA.21

ligand

thalidomide

品質等級

化驗

≥95.0%

形狀

powder or crystals

儲存溫度

2-8°C

SMILES 字串

O=C(C(F)(F)F)[O-].O=C(COC1=CC=CC(C(N2C3C(NC(CC3)=O)=O)=O)=C1C2=O)NCCCCCCCC[NH3+]

InChI

1S/C23H30N4O6.C2HF3O2/c24-12-5-3-1-2-4-6-13-25-19(29)14-33-17-9-7-8-15-20(17)23(32)27(22(15)31)16-10-11-18(28)26-21(16)30;3-2(4,5)1(6)7/h7-9,16H,1-6,10-14,24H2,(H,25,29)(H,26,28,30);(H,6,7)

InChI 密鑰

AJVLNIUPDHKOPS-UHFFFAOYSA-N

應用

A functionalized cereblon ligand for development of Thalidomide based PROTACs. Allows rapid conjugation with carboxyl linkers due to presence of amine group via peptide coupling reactions. Amenable for linker attachement via reductive amination, and a basic building block for making protein degrader library.

Technology Spotlight:

Degrader Building Blocks for Targeted Protein Degradation

Protein Degrader Building Blocks

法律資訊

PROTAC® is a registered trademark of Arvinas Operations, Inc., and is used under license.
PROTAC is a registered trademark of Arvinas Operations, Inc., and is used under license

象形圖

Skull and crossbonesHealth hazard

訊號詞

Danger

危險聲明

危險分類

Acute Tox. 3 Oral - Acute Tox. 4 Dermal - Repr. 1A

儲存類別代碼

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


從最近期的版本中選擇一個:

分析證明 (COA)

Lot/Batch Number

未看到正確版本?

如果您需要一個特定的版本,您可以透過批號來尋找特定憑證。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Jingwei Shao et al.
Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(20), e2102555-e2102555 (2021-08-17)
DNA-binding proteins, including transcription factors (TFs), play essential roles in various cellular processes and pathogenesis of diseases, deeming to be potential therapeutic targets. However, these proteins are generally considered undruggable as they lack an enzymatic catalytic site or a ligand-binding
Daniel P Bondeson et al.
Annual review of pharmacology and toxicology, 57, 107-123 (2016-10-13)
Protein homeostasis networks are highly regulated systems responsible for maintaining the health and productivity of cells. Whereas therapeutics have been developed to disrupt protein homeostasis, more recently identified techniques have been used to repurpose homeostatic networks to effect degradation of
Momar Toure et al.
Angewandte Chemie (International ed. in English), 55(6), 1966-1973 (2016-01-13)
The current inhibitor-based approach to therapeutics has inherent limitations owing to its occupancy-based model: 1) there is a need to maintain high systemic exposure to ensure sufficient in vivo inhibition, 2) high in vivo concentrations bring potential for off-target side effects, and 3) there is
Kedra Cyrus et al.
Molecular bioSystems, 7(2), 359-364 (2010-10-06)
Conventional genetic approaches have provided a powerful tool in the study of proteins. However, these techniques often preclude selective manipulation of temporal and spatial protein functions, which is crucial for the investigation of dynamic cellular processes. To overcome these limitations
Philipp M Cromm et al.
Cell chemical biology, 24(9), 1181-1190 (2017-06-27)
Traditional pharmaceutical drug discovery is almost exclusively focused on directly controlling protein activity to cure diseases. Modulators of protein activity, especially inhibitors, are developed and applied at high concentration to achieve maximal effects. Thereby, reduced bioavailability and off-target effects can

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務