跳转至内容
Merck
  • Role of C/EBP homologous protein in retinal ganglion cell death after ischemia/reperfusion injury.

Role of C/EBP homologous protein in retinal ganglion cell death after ischemia/reperfusion injury.

Investigative ophthalmology & visual science (2014-11-22)
Sonali Nashine, Yang Liu, Byung-Jin Kim, Abbot F Clark, Iok-Hou Pang
摘要

To investigate the role of C/EBP homologous protein (CHOP), a proapoptotic protein, and the unfolded protein response (UPR) marker that is involved in endoplasmic reticulum (ER) stress-mediated apoptosis in mouse retinal ganglion cell (RGC) death following ischemia/reperfusion (I/R) injury. Retinal I/R injury was induced in adult C57BL/6J wild-type (WT) and CHOP knockout (Chop(-/-)) mice by raising IOP to 120 mm Hg for 60 minutes. Expression of CHOP and other UPR markers was studied by Western blot and immunohistochemistry. Retinal ganglion cell counts were performed in retinal flat mounts stained with an RGC marker. Retinal ganglion cell function was evaluated by scotopic threshold response (STR) electroretinography. In WT mice, retinal CHOP was upregulated by 30% in I/R-injured eyes compared to uninjured eyes 3 days after injury (P < 0.05). Immunohistochemistry confirmed CHOP upregulation specifically in RGCs. CHOP knockout did not affect baseline RGC density or STR amplitude. Ischemia/reperfusion injury decreased RGC densities and STR amplitudes in both WT and Chop(-/-) mice. However, survival of RGCs in I/R-injured Chop(-/-) mouse was 48% higher (P < 0.05) than that in I/R-injured WT mouse 3 days after I/R injury. Similarly, RGC density was significantly higher in Chop(-/-) eyes at 7, 14, and 28 days after I/R injury. Scotopic threshold response amplitudes of Chop(-/-) mice were significantly higher at 3 and 7 days after I/R than those of WT mice. Absence of CHOP partially protects against RGC loss and reduction in retinal function after I/R injury, indicating that CHOP and, thus, ER stress play an important role in RGC apoptosis in retinal I/R injury.

材料
货号
品牌
产品描述

Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
蔗糖, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
氯化氢 溶液, 4.0 M in dioxane
Sigma-Aldrich
蔗糖, ≥99.5% (GC)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
蔗糖, ≥99.5% (GC), BioXtra
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
蔗糖, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
盐酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
盐酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
氯化氢 溶液, 2.0 M in diethyl ether
Supelco
蔗糖, Pharmaceutical Secondary Standard; Certified Reference Material
USP
蔗糖, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
蔗糖, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
蔗糖, ≥99.5% (GC)
Sigma-Aldrich
单克隆抗 β-肌动蛋白抗体 小鼠抗, clone AC-74, ascites fluid
Sigma-Aldrich
氯化氢 溶液, 1.0 M in diethyl ether
Sigma-Aldrich
盐酸, puriss., 24.5-26.0%
Sigma-Aldrich
蔗糖, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
盐酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
蔗糖, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
蔗糖, ACS reagent
Sigma-Aldrich
蔗糖, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
氯化氢 溶液, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Tobramycin, Aminoglycoside antibiotic
Sigma-Aldrich
蔗糖, meets USP testing specifications