跳转至内容
Merck
  • Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells.

Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells.

American journal of physiology. Heart and circulatory physiology (2014-07-20)
Nicole M Ashpole, Junie P Warrington, Matthew C Mitschelen, Han Yan, Danuta Sosnowska, Tripti Gautam, Julie A Farley, Anna Csiszar, Zoltan Ungvari, William E Sonntag
摘要

Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT.

材料
货号
品牌
产品描述

Sigma-Aldrich
蔗糖, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
蔗糖, ≥99.5% (GC)
Sigma-Aldrich
蔗糖, ≥99.5% (GC), BioXtra
Sigma-Aldrich
蔗糖, BioUltra, for molecular biology, ≥99.5% (HPLC)
USP
蔗糖, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
辛烷, reagent grade, 98%
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
蔗糖, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
蔗糖, ≥99.5% (GC)
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
蔗糖, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
蔗糖, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
蔗糖, meets USP testing specifications
Sigma-Aldrich
乙二胺四乙酸, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
乙二胺四乙酸 二钠盐 溶液, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Supelco
蔗糖, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
辛烷, electronic grade, ≥99.999% metals basis, ≥99% (CP)
Sigma-Aldrich
辛烷, anhydrous, ≥99%
Sigma-Aldrich
蔗糖, ACS reagent
Sigma-Aldrich
乙二胺四乙酸, purified grade, ≥98.5%, powder
Supelco
辛烷, analytical standard
Millipore
蔗糖, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
蔗糖, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
乙二胺四乙酸, ≥98.0% (KT)
Sigma-Aldrich
乙二胺四乙酸, BioUltra, ≥99.0% (KT)
Supelco
蔗糖, analytical standard, for enzymatic assay kit SCA20
蔗糖, European Pharmacopoeia (EP) Reference Standard