跳转至内容
Merck
  • Functional formation of heterotypic gap junction channels by connexins-40 and -43.

Functional formation of heterotypic gap junction channels by connexins-40 and -43.

Channels (Austin, Tex.) (2014-12-09)
Xianming Lin, Qin Xu, Richard D Veenstra
摘要

Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance - voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
苯甲磺酰氟, ≥98.5% (GC)
Sigma-Aldrich
叠氮化钠, ReagentPlus®, ≥99.5%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
叠氮化钠, BioUltra, ≥99.5% (T)
Sigma-Aldrich
正钒酸钠, ≥90% (titration)
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
叠氮化钠, purum p.a., ≥99.0% (T)
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
苯甲磺酰氟, ≥99.0% (T)
Sigma-Aldrich
氟化钠, ReagentPlus®, ≥99%
Sigma-Aldrich
抗间隙连接蛋白43 兔抗, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
正钒酸钠, 99.98% trace metals basis
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
叠氮化钠, BioXtra
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氟化钠, puriss., meets analytical specification of Ph. Eur., BP, USP, 98.5-100.5% (calc. to the dried substance)
Supelco
氯化钠, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
氟化钠, BioReagent, suitable for insect cell culture, ≥99%
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氟化钠0.5M 溶液