The American journal of physiology, 273(3 Pt 2), H1082-H1089 (1997-10-10)
Cyclic ADP-ribose (cADPR), an endogenous metabolite of beta-NAD+, activates Ca2+ release from endoplasmic reticulum in sea urchin eggs via the ryanodine receptor (RyR) pathway. A similar role has been proposed in cardiac sarcoplasmic reticulum (SR), although this remains controversial. We
Advances in experimental medicine and biology, 419, 411-419 (1997-01-01)
Mobilization of internal Ca+2 is an important signaling mechanism in cells. In addition to the inositol trisphosphate pathway, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide (NAADP) have been shown to mobilize Ca+2 via independent mechanisms. Although the structures of
The international journal of biochemistry & cell biology, 29(10), 1149-1166 (1998-01-23)
CD38 was first identified as a lymphocyte differentiation antigen that showed typical properties of an orphan receptor involved in many programs of cell proliferation and activation. However, CD38 proved also to be a bifunctional ectoenzyme that catalyzes the transient formation
Cell biochemistry and biophysics, 28(1), 1-17 (1997-12-05)
Ca2+ mobilization as a signaling mechanism has been placed on center stage with the discovery of the first Ca2+ messenger, inositol trisphosphate (IP3). This article focuses on two new Ca2+ release activators, which mobilize internal Ca2+ stores via mechanisms totally
Although it is becoming widely accepted that cADP-ribose (cADPR) can regulate calcium release from the endoplasmic reticulum in sea urchin eggs and in a variety of mammalian cell types, it remains controversial whether this substance might influence calcium release during