α-Chloralose stimulates the gama-aminobutyric acid (GABA)-induced chloride conductance of gama-aminobutyric acidA (GABAA)receptors expressed in Xenopuslaevis oocytes.[1]
成分
~85% α-氯醛糖与 ~15% β-氯醛糖的异构体混合物
其他說明
To gain a comprehensive understanding of our extensive range of Monosaccharides for your research, we encourage you to visit our Carbohydrates Category page.
The Journal of pharmacology and experimental therapeutics, 285(2), 680-686 (1998-05-15)
alpha-Chloralose is widely used as an anesthetic in the laboratory due to its minimal effects on autonomic and cardiovascular systems, yet little is known about its mechanism of action. We examined the effects of alpha-chloralose on gamma-aminobutyric acid type A
The Journal of neuroscience : the official journal of the Society for Neuroscience, 19(16), 7175-7181 (1999-08-06)
We tested the hypothesis that noxious stimuli induce pain modulation by activation of supraspinal structures. We found that intense noxious stimuli (i.e., subdermal injection of capsaicin or paw immersion in hot water) induced profound attenuation of the jaw-opening reflex in
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 32(2), 291-305 (2011-08-25)
To study how various anesthetics affect the relationship between stimulus frequency and generated functional magnetic resonance imaging (fMRI) signals in the rat dentate gyrus, the perforant pathway was electrically stimulated with repetitive low frequency (i.e., 0.625, 1.25, 2.5, 5, and
The European journal of neuroscience, 30(8), 1565-1575 (2009-10-14)
Most studies of the effect of cocaine on brain activity in laboratory animals are preformed under anesthesia, which could potentially affect the physiological responses to cocaine. Here we assessed the effects of two commonly used anesthetics [alpha-chloralose (alpha-CHLOR) and isofluorane
Magnetic resonance imaging, 28(7), 995-1003 (2010-05-12)
Functional connectivity measures based upon low-frequency blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) signal fluctuations have become a widely used tool for investigating spontaneous brain activity in humans. Still unknown, however, is the precise relationship between neural activity, the hemodynamic