CdSe/ZnS core/shell nanocrystals in solid form are highly purified quantum dots. They can be dispersed in most non-polar organic solvents such as toluene, chloroform, hexane, etc. With very low organic impurity, these quantum dots are specifically designed as emitters for optoelectronic applications such as display and solid state lighting.
Protocol to make QD solutions (dispersing QDs into solutions):
1. Weigh desired amount of the quantum dot powder and put it in a glass vial; 2. Add desired amount of the solvent, i.e. toluene, chloroform, hexane, etc. (mostly non-polar organic solvents) in the vial and shake the vial; 3. If there is any solid left in the vial after shaking, sonicate the vial for 30~60 seconds to get the quantum dot powder well dispersed. If required dilute the solution further.
Material has a shelf life of around 3 years if stored properly. Store at room temperature (4-25 °C); do not freeze. Should not be exposed to extreme temperatures.
We report a multilayer solution-processed blue light-emitting diode based on colloidal core/shell CdS/ZnS nanocrystal quantum dots (QDs). At a low-operating voltage of 5.5 V, the device emits spectrally pure blue radiation at 460 nm with a narrow full-width-at-half-maximum bandwidth of
Professor Sharma and colleagues review the synthesis and applications of this novel material. This includes a discussion of the unique properties of quantum dots and their suitability for solar cell applications, along with common synthesis techniques used to develop these materials.
Professor Xiaohu Gao (University of Washington, USA) provides a overview of recent quantum dot (QD) advancements and their potential for advancing bioassay and bioimaging technologies.