Journal of the American Chemical Society, 125(10), 2830-2831 (2003-03-06)
Indiscriminate adsorption of nanoparticles (NPs) significantly complicates the preparation of mesoscale NP patterns considered as enabling technology for many devices and processes. Instead of selected chemical functionalization of the substrate surface prior to the assembly of nanocolloids, the required optical
Quantum confinement can dramatically slow down electron-phonon relaxation in nanoclusters. Known as the phonon bottleneck, the effect remains elusive. Using a state-of-the-art time-domain ab initio approach, we model the observed bottleneck in CdSe quantum dots and show that it occurs
Ultrafast time-resolved absorption spectroscopy is used to investigate exciton dynamics in CdSe nanocrystal films. The effects of morphology, quantum-dot versus quantum-rod, and preparation of nanocrystals in a thin film form are investigated. The measurements revealed longer intraband exciton relaxation in
Luminescent quantum dots were synthesized using bacterially derived selenide (Se(II-)) as the precursor. Biogenic Se(II-) was produced by the reduction of Se(IV) by Veillonella atypica and compared directly against borohydride-reduced Se(IV) for the production of glutathione-stabilized CdSe and β-mercaptoethanol-stabilized ZnSe
Journal of nanoscience and nanotechnology, 12(11), 8258-8265 (2013-02-21)
Quantum dots are being widely used in physics and in the biomedical industry in recent years due to their excellent optical characteristics. However, studies have shown that cadmium selenide core-shell quantum dots exhibit cytotoxicity. The present study investigates the induction
Review the potential of self-assembled multilayer gate dielectric films fabricated from silane precursors for organic, inorganic, and transparent TFT and for TFT circuitry and OLED displays.