Przejdź do zawartości
Merck

Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas.

Nature genetics (2012-12-25)
Claire Palles, Jean-Baptiste Cazier, Kimberley M Howarth, Enric Domingo, Angela M Jones, Peter Broderick, Zoe Kemp, Sarah L Spain, Estrella Guarino, Estrella Guarino Almeida, Israel Salguero, Amy Sherborne, Daniel Chubb, Luis G Carvajal-Carmona, Yusanne Ma, Kulvinder Kaur, Sara Dobbins, Ella Barclay, Maggie Gorman, Lynn Martin, Michal B Kovac, Sean Humphray, Anneke Lucassen, Christopher C Holmes, David Bentley, Peter Donnelly, Jenny Taylor, Christos Petridis, Rebecca Roylance, Elinor J Sawyer, David J Kerr, Susan Clark, Jonathan Grimes, Stephen E Kearsey, Huw J W Thomas, Gilean McVean, Richard S Houlston, Ian Tomlinson
ABSTRAKT

Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Taq DNA Polymerase from Thermus aquaticus, with 10× PCR reaction buffer containing MgCl2
Sigma-Aldrich
Taq DNA Polymerase from Thermus aquaticus, with 10× PCR reaction buffer without MgCl2
Sigma-Aldrich
DNA Polymerase I from Escherichia coli lysogenic for NM 964, buffered aqueous glycerol solution