Przejdź do zawartości
Merck

Tight control of trehalose content is required for efficient heat-induced cell elongation in Candida albicans.

The Journal of biological chemistry (2012-09-07)
Joke Serneels, Hélène Tournu, Patrick Van Dijck
ABSTRAKT

The ability to form hyphae in the human pathogenic fungus Candida albicans is a prerequisite for virulence. It contributes to tissue infection, biofilm formation, as well as escape from phagocytes. Cell elongation triggered by human body temperature involves the essential heat shock protein Hsp90, which negatively governs a filamentation program dependent upon the Ras-protein kinase A (PKA) pathway. Tight regulation of Hsp90 function is required to ensure fast appropriate response and maintenance of a wide range of regulatory and signaling proteins. Client protein activation by Hsp90 relies on a conformational change of the chaperone, whose ATPase activity is competitively inhibited by geldanamycin. We demonstrate a novel regulatory mechanism of heat- and Hsp90-dependent induced morphogenesis, whereby the nonreducing disaccharide trehalose acts as a negative regulator of Hsp90 release. By means of a mutant strain deleted for Gpr1, the G protein-coupled receptor upstream of PKA, we demonstrate that elevated trehalose content in that strain, resulting from misregulation of enzymatic activities involved in trehalose metabolism, disrupts the filamentation program in response to heat. Addition of geldanamycin does not result in hyphal extensions at 30 °C in the gpr1Δ/gpr1Δ mutant as it does in wild type cells. In addition, validamycin, a specific inhibitor of trehalase, the trehalose-degrading enzyme, inhibits cell elongation in response to heat and geldanamycin. These results place Gpr1 as a regulator of trehalose metabolism in C. albicans and illustrate that trehalose modulates Hsp90-dependent activation of client proteins and signaling pathways leading to filamentation in the human fungal pathogen.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
D-Glucose 6-phosphate solution, ~1 M in H2O (approx. 260 mg per ml)
Sigma-Aldrich
Trehalase from porcine kidney, buffered aqueous glycerol solution, ≥1.0 units/mg protein