Przejdź do zawartości
Merck

Reactive Oxygen Species (ROS) are Critical for Morphine Exacerbation of HIV-1 gp120-Induced Pain.

Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology (2020-08-23)
Yuqiang Shi, Subo Yuan, Shao-Jun Tang
ABSTRAKT

Many HIV patients develop chronic pain and use opioid-derived medicine as primary analgesics. Emerging clinical evidence suggests that chronic use of opioid analgesics paradoxically heightens pain states in patients. This side effect of opioid analgesics has a significant negative impact on clinical practice, but the underlying pathogenic mechanism remains elusive. Using a mouse model of HIV-associated pain, we simulated the development of morphine exacerbation on pain and investigated potential underlying cellular and molecular pathways. We found that repeated morphine treatment promoted astrocyte activation in the spinal dorsal horn (SDH) and up-regulation of pro-inflammatory cytokines IL-1β and TNF-α. Furthermore, we observed that morphine administration potentiated mitochondrial reactive oxygen species (ROS) in the SDH of the HIV pain model, especially on astrocytes. Systemic application of the ROS scavenger phenyl-N-t-butyl nitrone (PBN) not only blocked the enhancement of gp120-induced hyperalgesia by morphine but also astrocytic activation and cytokine up-regulation. These findings suggest a critical role of ROS in mediating the exacerbation of gp120-induced pain by morphine. Graphical abstract.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5, ascites fluid, clone GA5, Chemicon®
Sigma-Aldrich
Anti-Interleukin-1β, from rabbit, purified by affinity chromatography
Sigma-Aldrich
Anti-Tumor Necrosis Factor-α Antibody, Chemicon®, from rabbit