Przejdź do zawartości
Merck

Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans.

Nature communications (2016-01-23)
Tanimul Alam, Hiroki Maruyama, Chun Li, Strahil Iv Pastuhov, Paola Nix, Michael Bastiani, Naoki Hisamoto, Kunihiro Matsumoto
ABSTRAKT

The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Anti-Serotonin Antibody, clone YC5/45, culture supernatant, clone YC5/45, Chemicon®