- Chirality and helix stability of polyglutamic acid enantiomers.
Chirality and helix stability of polyglutamic acid enantiomers.
In this work the chirality and the relative thermal stability of ordered micellar aggregates of poly-L- and poly-D-glutamic acids with the cationic surfactant C14TAB is examined. The complexed mesophases poly-L-Glu/C14TAB and poly-d-Glu/C14TAB were characterized by circular dichroism (CD) in the temperature range 10-70 degrees C for their chirality and thermal stability as well as by X-ray diffraction (XRD) for the micellar ordered structure. Low angle XRD analysis showed that both micellar aggregates poly-L-Glu/C14TAB and poly-D-Glu/C14TAB are hexagonally packed in a MCM-41 fashion with an intermicellar distance identical and equal to 3.55+/-0.10 nm. The CD spectra indicated that both complexes poly-L-Glu/C14TAB and poly-D-Glu/C14TAB possess a mainly alpha-helix structure and are exact mirror images to each other. The same mirror images and a mainly alpha-helix configuration were also observed by CD for the free poly-l- and poly-d-glutamic acids at room temperature. As the temperature increases from 10 up to 70 degrees C the alpha-helix of the poly-l-glutamic acid is gradually transformed to a mixture containing increased amounts of the 3(10)-helix while the alpha-helix structure of the poly-d-glutamic acid is constantly degenerated. In contrast the alpha-helices of the corresponding complexes poly-L-Glu/C14TAB and poly-d-Glu/C14TAB are degenerated upon heating without appreciable increase of the 3(10)-helices as an intermediate configuration. This difference in helix conservation is attributed to increase protection of the l-enantiomers, compared to d-enantiomers, which might be related to the survival of l-aminoacids in the living world.