Przejdź do zawartości
Merck

Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring.

Nature communications (2018-09-27)
Muyang Ban, Yatao Zou, Jasmine P H Rivett, Yingguo Yang, Tudor H Thomas, Yeshu Tan, Tao Song, Xingyu Gao, Dan Credington, Felix Deschler, Henning Sirringhaus, Baoquan Sun
ABSTRAKT

Organometal halide perovskites (OHP) are promising materials for low-cost, high-efficiency light-emitting diodes. In films with a distribution of two-dimensional OHP nanosheets and small three-dimensional nanocrystals, an energy funnel can be realized that concentrates the excitations in highly efficient radiative recombination centers. However, this energy funnel is likely to contain inefficient pathways as the size distribution of nanocrystals, the phase separation between the OHP and the organic phase. Here, we demonstrate that the OHP crystallite distribution and phase separation can be precisely controlled by adding a molecule that suppresses crystallization of the organic phase. We use these improved material properties to achieve OHP light-emitting diodes with an external quantum efficiency of 15.5%. Our results demonstrate that through the addition of judiciously selected molecular additives, sufficient carrier confinement with first-order recombination characteristics, and efficient suppression of non-radiative recombination can be achieved while retaining efficient charge transport characteristics.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
18-Crown-6, 99%
Sigma-Aldrich
Palmitoylethanolamide