跳转至内容
Merck
  • Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo.

Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo.

ACS nano (2015-02-03)
Antonella Mangraviti, Stephany Yi Tzeng, Kristen Lynn Kozielski, Yuan Wang, Yike Jin, David Gullotti, Mariangela Pedone, Nitsa Buaron, Ann Liu, David R Wilson, Sarah K Hansen, Fausto J Rodriguez, Guo-Dong Gao, Francesco DiMeco, Henry Brem, Alessandro Olivi, Betty Tyler, Jordan J Green
摘要

Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat glioma cell lines, 9L and F98, to discover nanoparticle formulations more effective than the leading commercial reagent Lipofectamine 2000. The lead polymer structure, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine, is a poly(β-amino ester) (PBAE) and formed nanoparticles with HSVtk DNA that were 138 ± 4 nm in size and 13 ± 1 mV in zeta potential. These nanoparticles containing HSVtk DNA showed 100% cancer cell killing in vitro in the two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding GFP maintained robust cell viability. For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. These treated animals showed a significant benefit in survival (p = 0.0012 vs control). Moreover, following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor. This study highlights a nanomedicine approach that is highly promising for the treatment of malignant glioma.

材料
货号
品牌
产品描述

Sigma-Aldrich
四氢呋喃, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
四氢呋喃, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
L-谷氨酰胺, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
四氢呋喃, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
碘化丙啶, ≥94.0% (HPLC)
Sigma-Aldrich
L-谷氨酰胺
Sigma-Aldrich
四氢呋喃, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
胸苷, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
四氢呋喃, ReagentPlus®, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
胸苷, ≥99%
Sigma-Aldrich
四氢呋喃, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
SAFC
L-谷氨酰胺
Sigma-Aldrich
四氢呋喃, ACS reagent, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
3-氨基-1-丙醇, 99%
Sigma-Aldrich
1,4-丁二醇二丙烯酸酯, technical grade, contains ~75 ppm hydroquinone as inhibitor
Sigma-Aldrich
L-谷氨酰胺, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
5-氨基-1-戊醇, ≥92.0% (GC)
Sigma-Aldrich
4-氨基-1-丁醇, 98%
Sigma-Aldrich
碘化丙啶 溶液
Sigma-Aldrich
四氢呋喃, suitable for HPLC, contains no stabilizer
Sigma-Aldrich
3-氨基-1-丙醇, ≥99%
Sigma-Aldrich
四氢呋喃, SAJ first grade, ≥99.0%
Sigma-Aldrich
胸苷, ≥99.0% (HPLC)
Supelco
四氢呋喃, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-谷氨酰胺
Sigma-Aldrich
L-谷氨酰胺, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
四氢呋喃, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
四氢呋喃, JIS special grade, ≥99.5%
Sigma-Aldrich
碘化丙啶, ≥94% (HPLC)