推荐产品
描述
Bandgap: 5.97 eV
Raman Peak: 1370 /cm-1
h-BN Coverage: 100% with sporadic adlayers
(Monolayer h-BN)
品質等級
尺寸
6 in. (6 in.) × 150 mm (150 mm)
粒徑
>4 μm
InChI
1S/BN/c1-2
InChI 密鑰
PZNSFCLAULLKQX-UHFFFAOYSA-N
正在寻找类似产品? 访问 产品对比指南
應用
Monolayer hexagonal boron nitride (h-BN), also known as “white graphene”, is a wide-bandgap 2D crystal (∼ 6 eV that can be tuned to ∼2 eV) with exceptional strength , large oxidation resistance at high temperatures , and optical functionalities . Among its potential applications are:
- Two-dimensional electronics
- Nanophotonic and other optoelectronic devices
- Quantum communication and information science
- Aerospace industry
- MEMS and NEMS
- Micro-/nano- actuators
- Insulating/transparent coatings .
儲存和穩定性
To ensure the maximum shelf life of your hBN sample, it is best stored under vacuum or in inert atmosphere (Argon or Nitrogen) conditions once the vacuum sealed package has been opened.
For all hBN-on-copper products, the displayed range represents electronic data that were obtained after transfer hBN to SiO2. Your own metrics will depend entirely on the transfer methods that you use, and the resultant quality of your transfers.
For all hBN-on-copper products, the displayed range represents electronic data that were obtained after transfer hBN to SiO2. Your own metrics will depend entirely on the transfer methods that you use, and the resultant quality of your transfers.
基底
6″ x 6″ h-BN/copper foil pieces are secured to their underlying plastic containers with four small Kapton tape pieces, one in each corner. Gently peel the tape or cut off the corners of the foil to release the foil from the plastic container.
儲存類別代碼
13 - Non Combustible Solids
水污染物質分類(WGK)
WGK 2
閃點(°F)
Not applicable
閃點(°C)
Not applicable
From 2-D to 0-D Boron Nitride Materials, The Next Challenge
Materials, 12(23), 3905-3905 (2019)
Microsystems & nanoengineering, 3, 17038-17038 (2017-07-31)
Atomic layers of hexagonal boron nitride (h-BN) crystal are excellent candidates for structural materials as enabling ultrathin, two-dimensional (2D) nanoelectromechanical systems (NEMS) due to the outstanding mechanical properties and very wide bandgap (5.9 eV) of h-BN. In this work, we report
Materials (Basel, Switzerland), 12(23) (2019-11-30)
The discovery of graphene has paved the way for intense research into 2D materials which is expected to have a tremendous impact on our knowledge of material properties in small dimensions. Among other materials, boron nitride (BN) nanomaterials have shown
Scientific reports, 7, 45584-45584 (2017-04-04)
Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN's hexagonal structure, which involves defects or grain boundaries
Monolayer to Bulk Properties of Hexagonal Boron Nitride
The Journal of Physical Chemistry, 122, 25524-25529 (2018)
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门