跳转至内容
Merck

900662

Sigma-Aldrich

Poly(D,L-lactide-co-glycolide)(85/15)-b-poly(ethylene glycol)-carboxylic acid

5k-13k

别名:

PLGA-PEG, PLGA-PEG Carboxylic acid diblock copolymer, PLGA-PEG-COOH, PLGA-b-PEG

登录查看公司和协议定价


About This Item

线性分子式:
HO(CH(CH3)COO)x(CH2COO)y(CH2CH2O)nH
分類程式碼代碼:
12352106
NACRES:
NA.23

品質等級

形狀

solid

儲存溫度

2-8°C

應用

Biocompatible, amphiphilic block copolymer composed of a hydrophilic PEG block and a hydrophobic Poly(lactide-co-glycolide) (PLGA) block, functionalized with a terminal carboxylic acid. These materials have been used in control release and nanoparticle formulation for drug delivery applications. Well-defined materials with varying properties can be prepared by controlling the relative length of each polymer block. Additionally, the ratio of lactide to glycolide can be tuned to control rate of degradation. Carboxylic acid termination allows for facile further chemical modification of these materials.

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Miles A Miller et al.
Nature communications, 6, 8692-8692 (2015-10-28)
Therapeutic nanoparticles (TNPs) aim to deliver drugs more safely and effectively to cancers, yet clinical results have been unpredictable owing to limited in vivo understanding. Here we use single-cell imaging of intratumoral TNP pharmacokinetics and pharmacodynamics to better comprehend their
Jijin Gu et al.
Molecular pharmaceutics, 12(8), 2889-2903 (2015-06-24)
The goal of this study was to develop and characterize a novel intravaginal film platform for targeted delivery of small interfering RNA (siRNA)-loaded nanoparticles (NP) to dendritic cells as a potential gene therapy for the prevention of sexually transmitted human
Soroush Ardekani et al.
Scientific reports, 5, 16258-16258 (2015-11-21)
Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门