Accéder au contenu
Merck

Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules.

Antimicrobial agents and chemotherapy (2014-04-16)
Katharine Trenholme, Linda Marek, Sandra Duffy, Gabriele Pradel, Gillian Fisher, Finn K Hansen, Tina S Skinner-Adams, Alice Butterworth, Che Julius Ngwa, Jonas Moecking, Christopher D Goodman, Geoffrey I McFadden, Subathdrage D M Sumanadasa, David P Fairlie, Vicky M Avery, Thomas Kurz, Katherine T Andrews
RÉSUMÉ

Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide acétique, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acide acétique, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acide acétique, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acide acétique solution, suitable for HPLC
Sigma-Aldrich
Chloroquine diphosphate salt, powder or crystals, 98.5-101.0% (EP)
Sigma-Aldrich
Acide acétique, for luminescence, BioUltra, ≥99.5% (GC)
USP
Acide acétique, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acide acétique, ≥99.5%, FCC, FG
Sigma-Aldrich
SAHA, ≥98% (HPLC)
Sigma-Aldrich
Sulforhodamine B, Dye content 75 %
Sigma-Aldrich
Acide acétique, natural, ≥99.5%, FG
Sigma-Aldrich
Sulforhodamine B sodium salt, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Nα-Tosyl-L-lysine chloromethyl ketone hydrochloride, ≥96% (TLC), powder
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
Sulforhodamine B sodium salt, Technical grade
Sigma-Aldrich
Nα-Acetyl-L-lysine
Supelco
Acide acétique, analytical standard
Sigma-Aldrich
Nα-Tosyl-L-lysine chloromethyl ketone hydrochloride, ≥99.0% (AT)
Supelco
Chloroquine phosphate, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Millipore
Acide acétique solution, suitable for microbiology