AZD2461, an olaparib analog, is an orally available, potent and selective PARP1 and PARP2 inhibitor that is a poor substrate for drug transporters. AZD2461 exhibits a high efficacy in olaparib-resistant tumors that overexpress P-glycoprotein.
Proceedings of the National Academy of Sciences of the United States of America, 112(27), 8409-8414 (2015-06-24)
Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents
Journal of cancer prevention, 19(2), 125-136 (2014-10-23)
Cells harboring BRCA1/BRCA2 mutations are hypersensitive to inhibition of poly(ADP-ribose) polymerase-1 (PARP-1). We recently showed that interference with PARP-1 activity by NU1025 is strongly cytotoxic for BRCA1-positive BT-20 cells but not BRCA1-deficient SKBr-3 cells. These unexpected observations prompted speculation that
The PARP inhibitor AZD2461 was developed as a next-generation agent following olaparib, the first PARP inhibitor approved for cancer therapy. In BRCA1-deficient mouse models, olaparib resistance predominantly involves overexpression of P-glycoprotein, so AZD2461 was developed as a poor substrate for
Poly(ADP-ribose) polymerase (PARP) enzymes initiate (mt)DNA repair mechanisms and use nicotinamide adenine dinucleotide (NAD+) as energy source. Prolonged PARP activity can drain cellular NAD+ reserves, leading to de-regulation of important molecular processes. Here, we provide evidence of a pathophysiological mechanism
Questions
Reviews
★★★★★ No rating value
Active Filters
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.