Mucolipin 3 (MCOLN3) belongs to the mucolipin family of ion channels and the superfamily of transient receptor potential (TRP) channels. This 553-amino acid protein is expressed in the early and late endosomes of epithelial cells. MCOLN3 possesses six transmembrane domains with the tails oriented towards the interior the cytosol.
Mucolipin-3 is mapped to human chromosome 1p22.3.
면역원
synthetic peptide corresponding to amino acids 26-43 of human mucolipin-3. This sequence is identical between human and mouse and highly conserved in mouse and rat.
애플리케이션
Anti-Mucolipin-3 (N-terminal) antibody produced in rabbit has been used in immunoblotting and immunostaining.
생화학적/생리학적 작용
Mucolipin 3 (MCOLN3) is a Ca2+-permeable channel which regulates the cargo traffic along the endosomal pathway. Its activity is regulated by changes in the pH. Overexpression of MCOLN3 in cells lead to large variations in the endosomal pathway and the depletion in its levels leads to the degradation of the epidermal growth factor receptor (EGFR).
Mutations in mouse mucolipin3 (MLN3, TRPML3) encoded by the MCOLN3 gene, are associated with deafness and pigmentation defects in varitint-waddler mice.
물리적 형태
Solution in 0.01 M phosphate buffered saline, pH 7.4, and 15 mM sodium azide.
면책조항
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
TRPML3 (mucolipin 3, MCOLN3) is an endolysosomal cation channel belonging to the TRPML subfamily of transient receptor potential channels. Gain-of-function mutations in the Trpml3 gene cause deafness, circling behavior and coat color dilution in mice due to cell death of
Expression and vesicular localization of mouse Trpml3 in stria vascularis, hair cells, and vomeronasal and olfactory receptor neurons
Castiglioni AJ, et al.
The Journal of Comparative Neurology, 519(6), 1095-1114 (2011)
TRPML and lysosomal function
Zeevi DA, et al.
Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1772(8), 851-858 (2007)
The varitint-waddler phenotype in mice is caused by gain-of-function mutations in mucolipin-3 (MCOLN3), a member of the mucolipin family of ion channels. These mice are characterized by defects in pigmentation, hearing loss and vestibular defects, suggesting that MCOLN3 might play
Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice
Di Palma F, et al.
Proceedings of the National Academy of Sciences of the USA, 99(23), 14994-14999 (2002)