コンテンツへスキップ
Merck
  • N-Acetylaspartate Synthase Deficiency Corrects the Myelin Phenotype in a Canavan Disease Mouse Model But Does Not Affect Survival Time.

N-Acetylaspartate Synthase Deficiency Corrects the Myelin Phenotype in a Canavan Disease Mouse Model But Does Not Affect Survival Time.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2015-10-30)
Helena Maier, Lihua Wang-Eckhardt, Dieter Hartmann, Volkmar Gieselmann, Matthias Eckhardt
要旨

Canavan disease (CD) is a severe, lethal leukodystrophy caused by deficiency in aspartoacylase (ASPA), which hydrolyzes N-acetylaspartate (NAA). In the brains of CD patients, NAA accumulates to high millimolar concentrations. The pathology of the disease is characterized by loss of oligodendrocytes and spongy myelin degeneration in the CNS. Whether accumulating NAA, absence of NAA-derived acetate, or absence of any unknown functions of the ASPA enzyme is responsible for the pathology of the disease is not fully understood. We generated ASPA-deficient (Aspa(nur7/nur7)) mice that are also deficient for NAA synthase Nat8L (Nat8L(-/-)/Aspa(nur7/nur7)). These mice have no detectable NAA. Nevertheless, they exhibited normal myelin content, myelin sphingolipid composition, and full reversal of spongy myelin and axonal degeneration. Surprisingly, although pathology was fully reversed, the survival time of the mice was not prolonged. In contrast, Aspa(nur7/nur7) mice with only one intact Nat8L allele accumulated less NAA, developed a less severe pathology, phenotypic improvements, and, importantly, an almost normal survival time. Therefore, inhibition of NAA synthase is a promising therapeutic option for CD. The reduced survival rate of Nat8L(-/-)/Aspa(nur7/nur7) mice, however, indicates that complete inhibition of NAA synthase may bear unforeseeable risks for the patient. Furthermore, we demonstrate that acetate derived from NAA is not essential for myelin lipid synthesis and that loss of NAA-derived acetate does not cause the myelin phenotype of Aspa(nur7/nur7) mice. Our data clearly support the hypothesis that NAA accumulation is the major factor in the development of CD.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
ホルムアルデヒド 溶液, for molecular biology, 36.5-38% in H2O
SAFC
ホルムアルデヒド 溶液, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
ピリドキサール 5′-リン酸 水和物, ≥98%
Sigma-Aldrich
モノクロナール抗α-チューブリン マウス宿主抗体, ascites fluid, clone B-5-1-2
Sigma-Aldrich
ホルムアルデヒド 溶液, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
抗APP A4抗体、APP {NT}のa.a. 66-81、クローン22C11, clone 22C11, Chemicon®, from mouse
Sigma-Aldrich
5′-リン酸ピリドキサール 一水和物, ≥97.0% (NT)
Supelco
ホルムアルデヒド 溶液, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
ホルムアルデヒド 溶液, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
ピリドキサール 5′-リン酸 水和物, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
ホルムアルデヒド 溶液, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
ホルムアルデヒド 溶液, 10%
Sigma-Aldrich
ホルムアルデヒド 溶液, SAJ first grade, ≥35.0%, contains methanol as stabilizer
Sigma-Aldrich
ホルムアルデヒド 溶液, JIS special grade, 36.0-38.0%, contains methanol as stabilizer
Sigma-Aldrich
抗CNPase抗体、クローン11-5B, clone 11-5B, Chemicon®, from mouse
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Anti-Myelin Proteolipid Protein Antibody, CT, clone PLPC1, clone PLPC1, Chemicon®, from mouse