コンテンツへスキップ
Merck
  • Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: part II. Application to dual systems and experimental verification.

Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: part II. Application to dual systems and experimental verification.

Journal of chromatography. A (2015-02-11)
Ludmila Müllerová, Pavel Dubský, Bohuslav Gaš
要旨

Interactions among analyte forms that undergo simultaneous dissociation/protonation and complexation with multiple selectors take the shape of a highly interconnected multi-equilibrium scheme. This makes it difficult to express the effective mobility of the analyte in these systems, which are often encountered in electrophoretical separations, unless a generalized model is introduced. In the first part of this series, we presented the theory of electromigration of a multivalent weakly acidic/basic/amphoteric analyte undergoing complexation with a mixture of an arbitrary number of selectors. In this work we demonstrate the validity of this concept experimentally. The theory leads to three useful perspectives, each of which is closely related to the one originally formulated for simpler systems. If pH, IS and the selector mixture composition are all kept constant, the system is treated as if only a single analyte form interacted with a single selector. If the pH changes at constant IS and mixture composition, the already well-established models of a weakly acidic/basic analyte interacting with a single selector can be employed. Varying the mixture composition at constant IS and pH leads to a situation where virtually a single analyte form interacts with a mixture of selectors. We show how to switch between the three perspectives in practice and confirm that they can be employed interchangeably according to the specific needs by measurements performed in single- and dual-selector systems at a pH where the analyte is fully dissociated, partly dissociated or fully protonated. Weak monoprotic analyte (R-flurbiprofen) and two selectors (native β-cyclodextrin and monovalent positively charged 6-monodeoxy-6-monoamino-β-cyclodextrin) serve as a model system.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
塩酸, ACS reagent, 37%
Sigma-Aldrich
水酸化ナトリウム, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
塩酸, ACS reagent, 37%
Sigma-Aldrich
水酸化ナトリウム, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
ギ酸, reagent grade, ≥95%
Sigma-Aldrich
水酸化ナトリウム 溶液, 50% in H2O
Sigma-Aldrich
塩化水素 溶液, 4.0 M in dioxane
Sigma-Aldrich
ギ酸, ACS reagent, ≥96%
Sigma-Aldrich
ギ酸, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
水酸化ナトリウム 溶液, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
塩酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
水酸化ナトリウム 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
水酸化ナトリウム, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
塩酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
塩酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
水酸化ナトリウム, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
塩酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
水酸化ナトリウム, reagent grade, 97%, powder
Sigma-Aldrich
塩酸, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
塩化水素 溶液, 2.0 M in diethyl ether
Sigma-Aldrich
水酸化リチウム 一水和物, ACS reagent, ≥98.0%
Sigma-Aldrich
水酸化ナトリウム, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
ギ酸, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
ギ酸, ACS reagent, ≥88%
Sigma-Aldrich
水酸化ナトリウム, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
水酸化ナトリウム 溶液, 5.0 M
Sigma-Aldrich
水酸化ナトリウム 溶液, 0.1 M
Supelco
塩酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
塩酸, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
ニトロメタン, ACS reagent, ≥95%