コンテンツへスキップ
Merck
  • Effect of surface treatment on bond strength of Ti-10Ta-10Nb to low-fusing porcelain.

Effect of surface treatment on bond strength of Ti-10Ta-10Nb to low-fusing porcelain.

The Journal of prosthetic dentistry (2013-02-12)
Bo-Ah Lee, Ok-Su Kim, Mong-Sook Vang, Yeong-Joon Park
要旨

Ti-10Ta-10Nb alloy is a promising alloy for metal ceramic crowns because of its good corrosion resistance and low cytotoxicity. However, more information is needed on the bond strength between this alloy and porcelain. The purpose of this study was to compare the surface morphology, surface roughness, and bond strength of a Ti-10Ta-10Nb alloy, pure Ti, and a Ti-6Al-4V alloy. Ti-10Ta-10Nb, pure Ti, and Ti-6Al-4V specimens (25 × 3 × 0.55 mm plate) were prepared and then divided into 6 groups (n=8) according to surface treatment. Group P (control group) was polished with SiC paper. Groups S50 and S250 were airborne-particle abraded with 50 μm and 250 μm aluminum oxide powder. Group HCl was immersed in 10% HCl aqueous solution, and Group HF was immersed in 17% HNO(3)/HF solution. Group TiN was coated with TiN. Atomic force microscopy was used to observe the surface roughness of the metal surface. Scanning electron microscopy was used to analyze the surface profile. A 3-point bending test was performed to evaluate the bond strength. Two-way analysis of variance (ANOVA) was performed to compare the roughness and bond strength and statistical differences were revealed by the Bonferroni post hoc test (α=.05). There were significant differences in the surface roughness, surface profile, and bond strength of the Ti alloys according to the surface treatments. The groups with the higher mean surface roughness showed higher bond strength, but surface profile had a larger effect on the bond strength than surface roughness. Moreover, the bond strength of the Ti-10Ta-10Nb alloy was high. Ti-10Ta-10Nb would be more suitable for a metal ceramic crown than pure Ti or Ti-6Al-4V, which have limited use because of their low bond strength to porcelain.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
塩酸, ACS reagent, 37%
Sigma-Aldrich
硝酸, ACS reagent, 70%
Sigma-Aldrich
塩酸, ACS reagent, 37%
Sigma-Aldrich
塩化水素 溶液, 4.0 M in dioxane
Sigma-Aldrich
フッ化水素酸, ACS reagent, 48%
Sigma-Aldrich
硝酸, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
塩酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
塩酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
塩酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
塩酸, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
硝酸, puriss. p.a., 65.0-67.0%
Sigma-Aldrich
塩化水素 溶液, 2.0 M in diethyl ether
Sigma-Aldrich
塩酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
硝酸, puriss. p.a., reag. ISO, reag. Ph. Eur., for determinations with dithizone, ≥65%
Sigma-Aldrich
フッ化水素酸, 48 wt. % in H2O, ≥99.99% trace metals basis
Supelco
塩酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
塩酸, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
塩化水素 溶液, 1.0 M in diethyl ether
Sigma-Aldrich
塩酸 溶液, 1 M
Sigma-Aldrich
塩酸, JIS special grade, 35.0-37.0%
Sigma-Aldrich
塩酸, puriss., 24.5-26.0%
Sigma-Aldrich
硝酸, puriss. p.a., ≥65% (T)
Sigma-Aldrich
炭化ケイ素, −400 mesh particle size, ≥97.5%
Sigma-Aldrich
硝酸, JIS special grade, 60.0-61.0%, density: 1.38
Sigma-Aldrich
塩酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
塩酸 溶液, 0.1 M
Sigma-Aldrich
塩酸 溶液, 6 M
Sigma-Aldrich
塩酸 溶液, 12 M
Sigma-Aldrich
塩化水素 溶液, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
炭化ケイ素, -200 mesh particle size