Dextrans are polysaccharides with molecular weights ≥1,000 Dalton, with a linear backbone of α-linked D-glucopyranosyl repeating units. Dextrans are found as bacterial extracellular polysaccharides. They are synthesized from sucrose by Leuconostoc mesenteroides and Lactobacillus brevis. Bacteria employ dextran in biofilm formation or as a protective coating to evade host phagocytes in the case of pathogenic bacteria. Dextran from Leuconostoc mesenteroides (Mw: 12,000) may be used as an analytical standard to calibrate the column for gel permeation chromatography (GPC).
Pakistan journal of pharmaceutical sciences, 26(4), 793-797 (2013-07-03)
Leuconostoc are known to produce dextran, which have great commercial importance in chemical, medical and food industry. The present study is an attempt to select the best medium for the isolation of indigenous dextran producing Leuconostoc, measuring their enzyme activities
This study aims to determine the in vivo effectiveness of low-frequency ultrasound in mediating the transport of macromolecules to the posterior segment of the eye via transscleral route. It investigates if damage is caused by ultrasound at the tested operation
Journal of biomedical nanotechnology, 9(1), 142-145 (2013-05-01)
We propose a new method for determining the quantity of superparamagnetic iron oxide nanoparticles (Fe3O4, SPIONs) embedded in animal tissue using magnetization measurements. With this method, the smallest detectable quantity of magnetite nanoparticles in a tissue sample is -1 microg.
Journal of biomedical nanotechnology, 9(7), 1261-1271 (2013-08-06)
This work aimed to test a dextran-functionalized magnetic fluid (DexMF) sample in mediating magnetohyperthermia to treat an advanced clinical Ehrlich-solid-tumor, to verify the effects of oral antioxidant administration of pequi-oil on this treatment and to investigate the potential of these
Journal of biomedical nanotechnology, 9(7), 1272-1285 (2013-08-06)
Superparamagnetic iron oxide nanoparticles (SPIONs) are inorganic nanomaterials gaining strong clinical interest due to their increasing number of biological and medical applications. The stabilization of SPIONs in a biocompatible stable suspension (bioferrofluid) is generally achieved by an adequate polymeric coating.