Passa al contenuto
Merck

New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.

Biosensors & bioelectronics (2017-05-05)
K Smolinska-Kempisty, O Sheej Ahmad, A Guerreiro, K Karim, E Piletska, S Piletsky
ABSTRACT

Here we present a potentiometric sensor for cocaine detection based on molecularly imprinted polymer nanoparticles (nanoMIPs) produced by the solid-phase imprinting method. The composition of polymers with high affinity for cocaine was optimised using molecular modelling. Four compositions were selected and polymers prepared using two protocols: chemical polymerisation in water and UV-initiated polymerisation in organic solvent. All synthesised nanoparticles had very good affinity to cocaine with dissociation constants between 0.6nM and 5.3nM. Imprinted polymers produced in organic solvent using acrylamide as a functional monomer demonstrated the highest yield and affinity, and so were selected for further sensor development. For this, nanoparticles were incorporated within a PVC matrix which was then used to prepare an ion-selective membrane integrated with a potentiometric transducer. It was demonstrated that the sensor was able to quantify cocaine in blood serum samples in the range of concentrations between 1nM and 1mM.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
(3-amminopropil)trimetossisilano, 97%
Sigma-Aldrich
Etilenglicole dimetilacrilato, 98%, contains 90-110 ppm monomethyl ether hydroquinone as inhibitor
Sigma-Aldrich
Trimethylolpropane trimethacrylate, contains 250 ppm monomethyl ether hydroquinone as inhibitor, technical grade
Sigma-Aldrich
N-(3-Aminopropyl)methacrylamide hydrochloride, contains ≤1,000 ppm MEHQ as stabilizer, 98% (HPLC)
Sigma-Aldrich
N-tert-Butylacrylamide, 97%
Sigma-Aldrich
1-[2-(Trifluoromethyl)phenyl]imidazole